学年

教科

質問の種類

数学 高校生

(2)の場合わけで符号にイコールが付いているときとついてないときの違いはどこですか?

90 基本例 例題 119 絶対値を含む不等式の表す領域 00000 次の不等式の表す領域を図示せよ。 (1)|x+2y|≦6 (2)|x|+|y+1|≦20基本 指針 絶対値 場合に分けるに従い, 記号 | |をはずす。 ① A≧0 のとき |A| =A ② A<0 のとき |A|=-A そのままはずす - をつけてはずす (1)|≦正の数の特別な形なので、次のことを利用すると早い。 c0 のとき |x|≦cc≦x≦c (2)上の①,②を利用して場合分け。 場合分けのポイントとなるのは||内の式 となるとき。ここでは, x, y+1の符号によって4通りの場合に分ける。 (1)x+2y|≦6から -6≤x+2y≤6 (1)では, 場合分けをせず ||をはずすこと 12x-3ができる。 LOST 解答 14 よって -6≤x+2y - すなわち x+2y=6 A 1 - 12x+3× 求める領域は,下図 (1) の斜線部分。 ただし, 境界線を含 「不等式y≧x-3の む。 (2) [1] x≧0, y≧-1のとき 「表す領域」 と 「不等式 x+y+1≦2 すなわちy-x+1 [2] x≧0,y<-1のとき x-(y+1)≦2 y≤- -x+3の表す領 「域」 の共通部分。 すなわち y≧x-3. -x+y+1≦2 [3] x<0,y-1のとき [4] x< 0, y<1のとき -x-(y+1)≦2 すなわち y=-x-3 すなわち y≦x+1 求める領域は,下図 (2) の斜線部分。 ただし,境界線を含[1] [2] [3] [4] の場 む。 (2) 13 -2 12 3x 合の領域を合わせたもの が、求める領域となる。 [1] の場合の領域は次の ようになる -6 -3 Ay 境界線を含む 12 O

回答募集中 回答数: 0
数学 高校生

数学の質問です (2)の問題でなぜ(1)のような場合分けのやり方ではダメなのですか? 解答よろしくお願いします🙇

第1章 IP 19 絶対値記号のついた学式 33 (解Ⅲ) 34 を利用すると・・・) Y y=x-3| のグラフは右図のようになるので, PAS y=x-31 3 y<2 となるæの値の範囲は 1 <x<5 2 y=2 次の不等式を解け (1) x-3/<2 .......① (2)|x+1/+/x-1/4 ......② 精講 絶対値記号の扱い方は,不等式の場合も方程式 (18) と同様に、 国 で学んだ考え方が大原則ですが,ポイントⅠの考え方が使えるなら ば、場合分けが必要ない分だけラクです。 また,3で学ぶグラフを利用する考え方(解Ⅲ)も大切です。 (1) (解Ⅰ) 解答 |-3|<2 は絶対値の性質より 2<x-3<2 (解Ⅱ) : 1<x<5 (2) i) <-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)-(x-1)<4 . -x-1-x+1<4 よって, -2<x<-1 i-1≦x≦1 のとき x+1≧0, x-1≦0 だから -2<x ? ②は (x+1)(x-1) <4 .. 0.x+2<4 0.x<2 よって, -1≦x≦1 をみたすすべての i) 1<z のとき x+1>0, x-1>0 だから ②は (x+1)+(x-1) <4 .. x<2 よって, 1<x<2 0 1 3 ◆不等式をみたす xを求めるので は式に残して おく 基礎問題 「基礎間」とは、入試に できない)問題を言いま 本書ではこの「基礎問」 効率よくまとめてありま ■入試に出題される 取り上げ、教科書 行います。 特に、 実にクリアできる ■「基礎間」→「精 題」で1つのテー ■1つのテーマは原 x-3 |r-3|= (x≥3) (3) i) x≧3のとき ①はx-3<2 :.x<5 よって, 3≦x<5 ii) x<3のとき ①は(x-3)<2 .. -x+3<2 ∴ 1<x よって, 1<x<3 i), ii) をあわせて1<<5 れないこと <x<3と仮定し れないこと i) ~i) をあわせて, -2<x<2 絶対値の中身が 0 となるところ で場合分け ポイント x≧3と仮定し ていることを忘 Ⅱ. |A| = A= -A (A<0) 1.xk<a (a>0) のとき, A (A≥0) -a<x<a ていることを忘 演習問題 19 次の不等式を解け. (1) |-2|>2 (2)|x-1|<|2x-3|-2

回答募集中 回答数: 0
1/80