学年

教科

質問の種類

数学 高校生

この問題のActionのところに書いてある、無理関数を含む不定形の極限は、分子または分母を有理化せよというのがなぜなのかが分かりません。どのようなメリットがあるのでしょうか?回答よろしくお願いします。

例題 52 極限と保数決 次の等式が成り立つように、定数a, bの値を定めよ。立た lim{√x2-2-(ax+b)}=0 8+xp+5 x→∞ 8-4 候補を絞り込む (2) a > 0 のとき a = 0 のとき →b ∞∞の不定形 与えられた等式を は-6台)] 満たすのは, この場合のみ。 8-1 ∞+∞∞ 思考プロセス la < 0 のとき α > 0 で考える。 Action» 無理関数を含む不定形の極限は,分子または分母を有理化せよ 解 a≧0 のとき,与えられた極限は∞に発散するからa>0 lim√x2 -2 = ∞, √x2-2-(ax + b) 0 = (x) m {√x²-2-(ax+b)}{√x-2+(ax+b)} √x2-2+(ax+b) -0-0-(1-a²)x2-2abx-(2+b²) == √x2 -2 +(ax+b) x→∞ a < 0 のとき mi lim{-(ax + b)}=∞ x→∞ a = 0 のとき lim{-(ax + b)} = -6 x→∞ TA よって, a≧0 のとき (与式)。 2+62 + (1-α2)x-2ab x 010 2 b 1- +a+ 2 x" x よってx→∞ のとき,これが収束する条件は 1-α2 = 0 a>0より α = 1 であり,このときの極限値は (+x+im{√x²-2-(ax+b)} lim{vx2-2-(ax+b)}=∞ 分子を有理化する。 x→∞より,x > 0 と考 えて、分母分子を x で 割る。 (S) SIS 8 分母のみの極限値は lim 2 2+62 81X x2 +a+ - 26 x x ・26 =1+α lim -b 80+x 2 b 2 1 +1+ 2 であるが, a>0より 0 にならない。 x x ゆえに したがって b=0 a=1,6=0

解決済み 回答数: 1
数学 高校生

(2)の問題がわかりません。 散布図は、1に近いので正の相関は、わかりますが、図の書き方がわかりません。なので➃か⑥で迷いました。 あと、ケの範囲はどう求めますでしょうか? 教えていただきたいです。🙇‍♀️

9 8/6/ Ex 14 データの相関関係 男女5人ずつが, 国語と数学のテ 制限時間 15分 男子 女子 ストを受けた。 国語 45 37 39 31 23 33 35 46 41 29 (1) 男子の国語の点数の平均値は 35点 分散は56 であり, 男子 の数学の点数の平均値は アイ点,分散はウエである。 また, 男子の国語と数学の 点数の相関係数は オカキである。 ただし, 小数第3位を四捨五入して小数第2位 まで答えよ。 数学 34 32 31 30 23 25 32 38 40 25 (2)男女10人の国語の点数をx, 数学の点数をyとし,x,yの相関係数をrとする。 x, yの散布図として正しいものは ク |,rの範囲として正しいものは ケ である。 ク ケ には,当てはまるものを,下の①~⑥のうちから1つずつ選べ。 -0.9 <r <-0.7 ① -0.5 <r <-0.3 ② 0.3 <r<0.5 0.7 <r < 0.9 ④ 45 ⑤ 45 ⑥ 45 40 35 40 40 8.0 35 0 35 y 30 25 + • 20 y 30 30 25 25 • 20 20 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 20 25 30 35 40 45 50 x 解答 (1) 数学の点数の平均点は (34+32 +31 +30 +23) アイ [30] 基本 14-1 5 よって、 数学の点数の分散は -{(34-30)'+(32-30)'+(31-30)'+(30-30)+(23-30)^} 5 1 70 ウエ (16+4+1+0+49)= = 5 5 国語と数学の点数の共分散は 1/ -{(45-35)(34-30)+(37-35)(32-30)+(39-35)(31-30) +(31-35)(30-30)+(23-35)(23-30)} 132 = ~ ( 40+4+4+0+84) = -=26.4 1に近い 5 5 26.4 26.4 オカキ ゆえに、相関係数は =0.942≒ +0.94 ○ 基本 14-2 √56×√14 28 (2)正しい散布図は’④ 更に、この散布図から, xとyの間には強い正の相関があること が読みとれる。 したがって, rの範囲として正しいものは ○基本 14-3 解法の思考回路 数学の点数の平均値,分 散を求める。 相関係数を求めるために, 国語と数学の点数の共分 散を求める。 散布図の特徴から, 相関 係数の値の範囲を絞りこ む。 データの分析

解決済み 回答数: 1