Mathematics
SMP
Terselesaikan

3(2)
解説のマーカー部分がなぜそうなるかわかりません。
それの前の文や後の文は理解できてます。

5 下の図1において、四角形ABCDはAB=12cm,BC=24cmの長方形である。辺AD上 に点を,辺BC上に点Fを,AE=BF=8cmとなるようにそれぞれとる。2点P,Qは点 Bを同時に出発し、点P は辺AB上を秒速1cmで点Aまで動き,点は辺BC上を秒速2cm で点Cまで動く。2点P,Qが点Bを同時に出発してからx秒後の△BPQの面積をycm2とす る。ただし、xの変域は2点P, Qが動き始めてから停止するまでとし、点Pが点Aに,点Qが 点Cにあるときのyの値は△ABCの面積とする。 12 cm 8 cm E x+12x-48=141 x2+12x-189=0 38 3 B F 24cm 図1 2 IC 1 42 このとき、次の1,2,3の問いに答えなさい。 y x = 900 -12V144+75 2 6 x=±3015 & XC=-6±15 2 9 3 1 x=3 のときのyの値を求めなさい。 3 1049 +3 8×3× 1/1/ (2 2yをxの式で表しなさい。 x(2x) = 2x² +5 2)19: 2)96 248 12(2x-8) 16 2124 3点Qが分FC上を動いているとき, 次の(1),(2)の問いに答えなさい。 XX ABPQの面積と△EFQの面積の和が141cmになるときのxとyの値をそれぞれ求めな さい。ただし、途中の計算も書くこと。 9 1247 122112 =242-46 12x-48 60 30 216 16 31 12 1891 (下の図2のように, 線分PQと線分EFとの交点をRとするとき, 四角形AERPの面積 AFQRの面積が等しくなるのは, 2点P, Qが点Bを出発してから何秒後か。 (12-x) 8cm E A 12 cm, P R Q → B F 24cm 図2 D 248 141 48 224 8 189 P 6 2)12 216 633)189 L
3. (2) (四角形AERPの面積) =△FQR のとき, △BPQ=(四角形BFRPの面積)+△FQR= (四角形BFRPの面積) + (四角形AERPの面積) =(長方形ABFEの面積)=12×8=96(cm2) より, 96=x2 これを解いて, x=±4√6 x>0より,x=4√6 よって, 4√6秒後。

Answers

✨ Jawaban Terbaik ✨

マーカーの部分のどこに違和感を感じていますか?

特に引っかかるところが無いように思えます。

受験生

すみません。
もう一度確認したら見る図形を間違えてました💧
ご迷惑をおかけしました。ありがとうございました。

Post A Comment
Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉