Answers

f(x)の原始関数の1つをF(x)とする。
すなわちF’(x)=f(x)が成り立つ。
この時【a→x】∫f(t)dt=【a→x】∫F’(t)dt=【a→x】[F(t)]=F(x)-F(a)。
まとめると【a→x】∫f(t)dt=F(x)-F(a)
両辺をxで微分する。F’(x)=f(x)とF(a)は定数であり定数の微分は0である事に注意すると、(aからxまでのf(t)の積分)’=F’(x)-F’(a)=f(x)-0=f(x)

Post A Comment
Apa kebingunganmu sudah terpecahkan?