Mathematics
SMA

135の解き方が分かりません。
まず黄色の所から分かりません。

--o x X3 ce =f(x)) -=g(x) x の 小値 (x) の 最大値 sin 60° COS60°y 6 COS 0= BC √10 AB 1 tan 0= AC 3 回転 する B 4章 1 C 8 3 'A 練習 x=6sin60°=6・ √3 2 -=3√3 ←sin 60°= √3 から 2 2 cos 60° y=6 cos 60°-6=310 「練習 「三角比の表」 を用いて, 次の問いに答えよ。 134 (1) 図 (ア) で, x, yの値を求めよ。 ただし 小数第2 位を四捨五入せよ。 (2)図 (イ)で,鋭角0 のおよその大きさを求めよ。 (1)x=15cos 33°=15×0.8387=12.5805 y=15sin33°=15×0.5446=8.169 小数第2位を四捨五入して x≒12.6, y≒8.2 =0.92307≒0.9231 で, 三角比の表から (ア) 12 (2) cos = 13 cos22°=0.9272, cos 23° = 0.9205 ゆえに、23° の方が近い値である。 よって 0≒23° 153 33° (イ) 13 ←三角比の表から cos33°=0.8387 sin33°=0.5446 13 [図形と計量] 練習 海面のある場所から崖の上に立つ高さ30m の灯台の先端の仰角が 60°で,同じ場所から灯台の 135 下端の仰角が30°のとき,崖の高さを求めよ。 崖の高さをhm とすると, 海面のある 場所から灯台までの水平距離は [ 金沢工大 ] h =h(mm) tan 30° また、海面から灯台の先端までの高さ は (30+h)m である。 60° よって,図から tan60°= 30+h 30° √3h ゆえに √3 30+h √3 h 100g+ 30m ←tan 30°= 10200 h 水平距離 hm 0m EI 0.200円

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?