Mathematics
SMA
Terselesaikan

右辺を1少なくしても影響無いのってなんで分かるんですか?🙇‍♂️

100回 15 等比数列と対数 00000 数列{an} は初項1, 公比5の等比数列である。 α+az+......+an≧10100 を満 [学習院大 ] 373 たす最小のnを求めよ。 ただし, 10g102=0.3010 とする。 p.365 基本事項 3. 基本11 1章 2 CHART & SOLUTION 等比数列の和と指数の問題 対数の利用 不等式の左辺を計算して整理すると 5"≧4・10200 +1 い。 等比数列 このままでは,nの値を求めるのは難しい。 そこで、対数(数学IIの内容) を利用するとよ なお、54・10100 +1 のままでは、両辺の常用対数をとって も右辺の計算がうまくできない。 そこで, nが自然数のとき 54.1000 +1と5"> 4101 は同値であるから, 5410100 の両辺の常用対数をとって計算するとよい。 5>4.10:00 5 ≧410100 +1 4.10100 4.10100+1 解答 a+a+......+an= 1・(5"-1)=1(5"−1) 5-1 S=(-1) r-1 よって与えられた不等式から 15-1)1000 整理して 5"≧4・1010 +1 ゆえに, 5>4・1010 を満たす最小の自然数nを求めればよ い。 両辺の常用対数をとると n10g10510g104+100 n(1-10g102)>210g102+100 log102=0.3010 であるから 100.6020 0.6990>100.6020 よって n> = 143.9······ 0.6990 ゆえに,n144 のとき 5">4・10100 が成り立つ。 したがって、求める最小のnの値は n=144 右辺を少なくしても 式の形からnに影響を 及ぼさない。 ←log15"=nlog105, 10g10410100 =log104+logio10100 = 2log102+100 10g105=10g10 10 2 =10g1010-10g 10 2 =1-10g102 5" は単調に増加する。

Answers

✨ Jawaban Terbaik ✨

右辺から1引いても、不等式の大小関係は変わらないからです。
3>=3 → 3>2
このように=は消えますが>の部分は変化しません。

なるほど、ありがとうございます!

Post A Comment
Apa kebingunganmu sudah terpecahkan?