Mathematics
SMA

数学A 確率の問題 余事象
5️⃣の(2)の問題です
大中小の3つのさいころを同時に投げるとき、次の確率を求めよ。
(2)目の積が偶数にになる確率
 
目の積が奇数になるのは3つとも奇数がでる場合で3³通りになるのはなぜですか?
この理由がわからないです

番名前( ⑤5 大、中、小3つのさいころを同時に投げるとき、次の確率を求めよ。 (※思考の過程がわかるように論述しなさい。) (1) 目の和が6になる確率 (2)目の積が偶数になる確率 る。 5 解答 (1) (2) 108 8 (解説) 動的に定 大、中、小3つのさいころを同時に投げるとき、目の出方は通り (1) 目の和が6になる場合の目の数の組み合わせは (1, 1, 4), (1,2,3) (2,2,2) 大、中、小の組み合わせを考えると 3! (1,1,4) は =3(通り), (1,2,3)は3!=6 (通り), (2,2,2)は1通り 2! 合計 3 +6 + 1 =10通りある。 10 5 よって、求める確率は 6% 108 (2)目の積が奇数になるのは3つとも奇数が出る場合で 3通り 目の積が偶数になるのは,目の積が奇数になる事象の余事象で、 その確率は 33 1 7 1 8 8 6 J, A, P, A, N, E, S, E の8個の文字全部を使ってできる順列について,JはPよ 左側にあり、かつPはNより左側にあるような並べ方は何通りあるか。 (※思考の過程がわかるように論述しなさい。) 解答 1680通り ( 求める順列の総数は,J, P, Nが同じ文字、例えばX,X, X であると考えて 3つのX, 2つのA、2つのE,1つのSを1列に並べる方法の総数と同じである。 8! 8.7.6.5.4 よって 1680 (通り) 3!2!2!1! 2.1x2.1 が手をつ [別解 C3×52×32×1= 8.7.6 5.4 × -x3x1=1680 (通り) 3.2.1 2.1
数学a 確率 定期テスト やり直し 一学期期末テスト 余事象

Answers

3つの数をかけて奇数となるのは、偶数が1つでもあると偶数になっちゃうので
すべて奇数のときだけ。
1つのさいころを投げたときに奇数(1or3or5)が出る場合の数は3通り。
3つのさいころを同時に投げるので、積の法則により3×3×3 = 3³

って感じですかね。

Post A Comment
Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉