Mathematics
SMA
Terselesaikan

117.2
文末これでもいいですか??

とき、 3 着目 不可能。 める 性質を ■は から, 余り 1 に割っ 4 り 余り 5 は 4 のと 基本例題117 余りによる整数の分類 nは整数とする。次のことを証明せよ。 (1) 共立薬大 (2) 学習院大] (1) 2²は3の倍数である。(2n+1は5で割り切れない。 p.485 基本事項 ② 重要 119,120 指針 すべての整数は,正の整数mを用いて,次のいずれかの形で表される。 (kは整数) mk, mk+1, mk+2, ******, mk+(m-1) ←mで割った余りが 0 1,2,... m-1 そして,この m の値は,問題に応じて決める。 (1) 「3の倍数である」=「3で割り切れる」であるから、3で割ったときの余りを考える。 したがって, 整数全体を, 3k, 3k+1, 3k+2に分けて考える。 (0) (2) (2)5で割った余りを考えるから, 整数全体を,5k, 5k+1,5k+2,5k+3,5k+4に分 けて考える。 【CHART 整数の分類 余りで分類 mで割った余りは0,1,2,...., m-1 → mk, mk+1, mk+2,.., mk+(m-1) (1+x 解答 (1) すべての整数nは, 3k, 3k+1, 3k+2 (kは整数) のいず れかの形で表される。 n¹+2n²=n²(n²+2) (534²5 [1] n=3kのとき n²+2n²=9k² (9k²+2) = 3.3k²(9k²+2) [2] n=3k+1²n^+2n² = (3k+1)²(9k²+6k+1+2) =3(3k+1)²(3k²+2k+1) [3] n=3k+2のとき n+2n²=(3k+2)(9k²+12k+4+2) =3(3k+2)²(3k²+4k+2) よって、2²は3の倍数である。 Ⅱ (2) すべての整数 n は, 5k, 5k+1,5k+2,5k+3, 5k+4 (kは整数)のいずれかの形で表される。 [1] n=5k のとき [2] n=5k+1のとき n²+n+1=5(5k²+k)+1 n²+n+1=5(5k²+3k)+3 [3] n=5k+2のとき n²+n+1=5(5k²+5k+1)+2 [4] n=5k+3のとき n²+n+1=5(5k²+7k+2)+3 [5]=5+4のとき n²+n+1=5(5k²+9k+4)+1 それぞれの場合について, n2+n+1を5で割った余りは, 13231であり, n²+n+1は5で割り切れない。 練習 ② 117 (1) nーは9の倍数である。 nは整数とする。次のことを証明せよ。 3k-1,3k, 3k+1 と表し てもよい。 この場合, 3k+1と3k-1をまとめて 3k±1 と書き 330 AM=(1+AS)(1+) とき,余りが3になることはない。 n¹+2n²=n²(n²+2) =(3k±1)^{(3k±1)^+2} =(3k±1)^(9k²±6k+3) =3(3k+1)^(3k²±2k+1) (複号同順) として, 3× (整数)の形にな ることを示すこともできる。 すべて3×(整数)の形。 5k-2, 5k-1, 5k, 5k+1, 5k+2 と表してもよい。 (検討) 左の解答のように, 整数を余 りで分類する方法は,剰余類 の考えによるものである (演 習例題 123 参照)。 [(1) 京都〕 p.491 EX82 487 Auto 4章 18 整数の割り算と商および余り ) n し 14
↑ 確〔]全)の整数nは整数を用いる sk. sk+1, ŠK₁₂, 5k+3₁ 5k + 4 と表すことができる。 [1]n=skar ² n²³²+ h + 1 = 25k ²³² + 3k + / = 5 ( 5 *²³ + k) + / [2]n=5K+ / a² € n²+n + / = ( JF + 1) ²³+ sk+/+/ = 25k²³²+ 13k + 5 =5(sk+3k)+3 [3] n = 5k + 2 α=z 2 f n²³² +n + 1 = 25k²³² +20k + 4 + 5k + 2 + 1 =25k+25k+ = 5( st²tsk + ²) + 2 [4] n² = 5k + bact f 2 n² +n + 1 = 254²³ + 30k + 9 + ²k + 3 +/ 25+² +35k + (3 = 5(5²²+7K+2 ) + 3 [5] n = 5k + far² f 1² +n + 1 = 25€ + 40k + 16 + 5k + 4 +/ 25k +45k +21 = 5( 5 F²³² + 9 F +4 ] + [ = [₁] ~[³] f n²+n+ / 12 52² 717 07.

Answers

✨ Jawaban Terbaik ✨

特に問題ありません

( )内が整数と断ったほうが丁寧ですが、
この模範解答も省略しているので構いません

Post A Comment
Apa kebingunganmu sudah terpecahkan?