Mathematics
SMA

122.1.ア
記述これでも大丈夫ですか??

は る)。 D a ある。 pk k 2 2 演習 例題 122 合同式の利用… 累乗の数の余り 合同式を利用して,次のものを求めよ。 (1)(ア) 13109で割った余り (イ) 20002000を12で割った余り[(イ) 早稲田大〕 (2) 472011 の一の位の数 [(2) 類 自治医大 ] p.492 基本事項 ③3 指針 乗法に関する次の性質を利用する。 a=b (mod m), c=d (modm) のとき 3 ac=bd (mod m) 法則 (1) 累乗の数に関する余りの問題では、余りの周期性に着目することがポイントである。 また, 合同式を利用して,指数の底を小さくしてから,周期性を調べると計算がらくに 注意 α” のα を指数の底という。 なる。 特に, an≡1(mod m) となるようなnが見つかれば、問題の見通しがかなり良くなる。 ESTAH I 11 (2) ある自然数 N の一の位の数は,Nを10で割ったときの余りに等しい。したがって, 10 を法とする剰余系を利用する。 CHART 累乗の数を割った余りの問題 余りの周期性に注目 ...... 4 自然数nに対し a"=6"(mod m) (ア) 13 4 (mod 9) であり 42=167 (mod 9), 43=64=1 (mod 9 ) ゆえに 41004 (43)33=4(mod9 ) よって13100=41004 (mod9) したがって 求める余りは 4 (イ) 20008 (mod 12) であり 8³ 8.4 8 (mod 12), ゆえに,kを自然数とすると よって したがって、求める余りは 4 477 (mod 10) であり 7³ 9.7 3 (mod 10), 羽 8²=64=4 (mod 12), 84≡(82)2=424(mod 12) 82k=4 (mod12) 20002000 82000=4 (mod 12) 72=49=9 (mod 10), 74=92=1 (mod 10 ) ゆえに よって 72011 (74) 502.73=1502・3=1.3=3 (mod 10) 472011=72011=3 (mod 10) したがって 472011 の一の位の数は 3 CHARO-[0] 13-4=9であるから 13 と4は9を法として合同で あることに着目し, 4” に関 する余りを調べる。 132, 13 を9で割った余り を調べてもよいが, 一般に 42 43 の方がらく。 合同式を利用して、 次のものを求めよ。 2000" の計算は面倒。 2000を12で割った余りは 8であるから, 2000 と8は 12 を法として合同。 したがって, 8" に関する余 りを調べる。 <47=10・4+7 2011=4・502+3 割った余り (イ) 30003000 を14で割った余り BST 495 4章 19 発展合同式 U る。 いる。 2) -1) でる にと は, は, う。 な 満 進 いう。
NO. DATE 13 = 4 (mod 9) 2+2x" 4² = 64 = 1 (mod 9 af. _|=F/ 5₂2 4000 = -( 4³ )³ ² 4 = | (mod ?) 13100 = 4100 = 4( mod 9) したがって求め子余りは4 166 10

Answers

黄色で囲った所が4になるはずですね
それ以外は良いと思います

Post A Comment
Apa kebingunganmu sudah terpecahkan?