Mathematics
SMA

(2)PQ²=のとこの式がどういう考え方をしているか分からないので教えて下さい!

97 双曲線となり用 考え方 直線とx軸正方向とのなす角は0であるから,この傾き 解答 (1) l の方程式はy=(x-1)tan0だか ら,これをCの方程式に代入すると 2x²-2(x-1)² tan²0 = 1 tan Qt (t = 0, ±1) とおいて整理して 2(1-t2)x2+4t2x- (1+2t) = 0 ①の判別式をDとすると D= (2+²)²2-2 (1-t²){-(1 + 2t²)} = 2(1 + t²) > 0 4 21² aβ= 1-t². この傾きは t(=tan) であるから」 よって, ① は異なる2つの実数解をもつから、直線は双曲線 Cと相異なる2点で交わる。 (証終) (2) ①の2つの解をα, β とすると, 解と係数の関係から 1+2t2 α+β=- 2(1-t²) _PQ2=(1+t)(a-B)2=(1+t){(a+β)²-4aß} 2(1-t)] = 2 (1+tan ²)² = 2(cos²0+ sin²0 ² \2 1-tan²0 A-sin20 2 cos220 22 \2 = 0+1"){(-2+²)* +4. 21+2²}-20+1² 答 G (3) (2)から, RS' = 回核心は ココ! なす角 2 cos¹2(0+5)= 4 1 1 cos220 PQ+= cos 20+ sin 20 PQ² RS2 2 2 11 2 sin ²20 0 なので G 1/12 (一定)(証終 F F H 第10章 式と曲線 第33回 97 Lv.★★) 解答は158ページ C を双曲線 2x2-2y2=1とする。 l,mを点 (10) を通り, x軸とそれ れ 0.0+匹の角をなす2直線とする。 ここで0はの整数倍でないとす CLOS 4 (1) 直線は双曲線 C と相異なる2点P, Qで交わることを示せ。 (2) PQ³ 2. を用いて表せ。 10 AN (3) 直線と曲線Cの交点をRSとするとき, らない定数となることを示せ。 98 Lv.★★★ 楕円 2 x² 曲 (1) 線分 OP の長さが 3 √5 (2) | α-0 の最大値を求めよ。 99 Lv.★★★ 座標平面上の楕円 解答は159ページ +y2=1上の点をP (3cosα, sinα) (0≦a≦ 2) (0≦a≦△)とし、原点O 32 + 点Pを結ぶ線分とx軸の正の部分のなす角を0とするとき,次の各問に答 えよ。 XORA y² 62 は42, + ・は0に (筑波) PQ² RS² の長さをそれぞれA, YB とするとき, 以上になる0の範囲を求めよ。 (群馬大 解答は160ページ・ a² =1 (a>b>0)について,以下の問いに答えよ (1)x座標が小さい方の焦点Fを極とし, F から x軸の正の方向へ向かう 半直線を始線とする極座標 (r, 9) で表された楕円の極方程式 r = f(0) を求めよ。 また, 点Fを通る楕円の弦を AB とし,線分 FAおよび FB 1 1 + rB の値は定数となること
数学

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?