Mathematics
SMA

(2)の問題でaをa−bに置き換える理由が分かりません。なんでですか?

00000 _8 基本事項 D 形して 差を作る。 (C) 作る。 2√6 >0 3 性紙) 170 vor 47 基本例題 29 不等式の証明 (絶対値と不等式) ①①①①① 次の不等式を証明せよ。 (1)|a+b|≦|a|+|6| (2) |a|-|6|≦|a- p.38 基本事項 4. 基本 28 1章 CHART SOLUTION ER 似た問題 1 結果を使う 2 方法をまねる (1) 絶対値を含むので,このままでは差をとりにくい。 |A=A2 を利用すると, 絶対値の処理が容易になる。 よって, 平方の差を作ればよい。 (2) 不等式を変形すると |a|≦la-6|+|6| (1) と似た形 ← ← そこで,(1) の不等式を利用することを考える。 JED ①の方針 解答 (1) (4|+|6|2-|a+6=(|a|+2|a||6|+|6)-(a+b)2 linf. A≧0 のとき =α²+2|ab|+b²-(a²+2ab+b2) -|A|≦A=|4| =2(abl-ab)≧0 4<0 のときくと -|A|=A<|A| よって la +6=(|a|+|6|)2 であるから, 一般に |a+b≧0,|a|+|6|≧0であるから -|A|A|A| |a+6|≦|a|+|6| 更に,これから を |A|-A≧0,|A|+A≧0 別解-|a|≦a≦al, -1660であるから 辺々を加えて -(|a|+|6|)≦a+b≦|a|+|6| |a|+|6|≧0であるから |a+b|≦|a|+|6| ◆ c≧0 のとき (2) (1) の不等式の文字αを a-bにおき換えて c≦x≦clxl≦c x≤-c, c≤x | (a-b)+6|≦la-6|+|6| .30 S=x|x|≥c |a|≦|a-6|+|6| よって ゆえに |a|-|6|≦|a-6| 別解] [1] |a|-| 6| < 0 すなわち |a| <|6| のとき ◆②の方針 |a|-|6|が負 の場合も考えられるの (左辺) <0, (右辺) > 0 であるから不等式は成り立つ。 SULT-QUEN [2] |a|-|6|≧0 すなわち |a|≧|6| のとき で、 平方の差を作るには 場合分けが必要。 |a-61-(|a|-161)²=(a-b)(a²-2|ab|+62 ) inf 等号成立条件 =2(−ab+lab)≧0 よって (|a|-|6|)2≦la-6|2 |a|-|6|≧0,|a-b≧0であるから (1) は ① から, labl=ab, すなわち, ab≧0 のとき。 よって, (2) は (a-b)≧0 ゆえに (a-b≧0かつb≧0) または (a-b≦0かつb≧0) すなわちab≧0 または a≦b≧0のとき。 la|-|b|≤la-blo PRACTICE・・・ 29 ② 不等式 lathsla|+|b」を利用して、次の不等式を証明せよ。 - 等式・不等式の証明
不等式の証明

Answers

No answer yet

Apa kebingunganmu sudah terpecahkan?

Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉