Mathematics
SMA
この例題17なのですが、なぜ3√2の値が求まるのですか?
0.1003に近い値を表から探して、出た1.23って底を10とする対数の真数の部分(?)ですよね、、
う値をそれぞれ求めよ。
1常用対数表を用いて,2 の値を小数第2位まで求めてみよう。
1
logio2=-×
×0.3010=0.1003
3
logio/2-
常用対数表から0.1003 に近い値を探して、 2=1.26
20
3/
htt 日 もを日
常用対数表(一)
食
例1 log1o3.72 の値を求めてみよう。
上位2桁の3.7 を左の縦の欄から,末位の2を上欄からそれぞれ探してその交点を
見ると log1o3.72=0.5705 が得られる。
囲 この表では, 0.5705 の一の位の0は省略して表記している。
数
O
1
2
3
4
5
6
フ
8
.0086
.0492
-0864-
.1206
.1523
.0128
.0531
-0899
.1239
.1553
.0170
.0569
.0934
.1271
.1584
.0043
.0000
.0414
1.0
1.1
1.2 十.0792
1.3
.0212
.0607
-0969
.1303
1614
.0253
.0645
.1004
.1335
.1644
.0294
.0682
.1038
.0334
.0719
.1072
.1399
.1703
.0453
.0374
.0755
.1106
.1430
.1732
-0828
.1173
.1139
.1461
.1367
.1673
1.4
.1492
.1818
.2095
.2355
.2601
.2833
.1847
.2122
.2380
.2625
.2856
.1875
.1761
.2041
.2304
.1790
1.5
1.6
1.7
1.8
1.9
.2068
.2330
.2577
.1903
.2175
.2430
.2672
.2900
.1931
.2201
.2455
.1959
.2227
.2480
.2718
.2945
.1987
.2253
.2504
.2742
.2967
.2014
.2279
.2529
.2148
.2405
.2648
.2553
.2788
.2695
.2923
.2765
.2989
.2810
.2878
2.0
2.1
2.2
2.3
2.4
3010
.3222
.3424
.3032
.3243
.3444
.3636
.3820
.3054
.3263
.3464
.3655
.3838
.3075
.3284
.3483
.3674
.3856
.3096
.3304
.3502
.3692
.3874
.3118
.3324
.3522
.3711
.3892
.3139
.3160
.3365
.3560
.3747
.3927
.3181
.3385
.3579
.3201
.3404
.3345
.3541
.3729
.3617
.3802
.3598
.3784
.3962
.3766
.3909
.3945
.3997
.4166
.4330
.4487
.4014
.4183
.4346
.4502
.4654
.4031
.4200
.4362
.4518
.4669
.3979
.4150
4082
.4249
.4048
.4065
2.5
2.6
2.7
2.8
2.9
.4099
.4216
.4378
.4533
.4116
.4281
.4440
.4594
.4133
.4298
.4456
.4609
.4757
.4232
.4265
.4425
2.4579
.4728
.4314
.4472
.4393
.4548
.4409
.4564
.4713
.4624
.4639
.4683
.4698
.4742
.4800
.4942
.4843
.4983
.5119
.5250
.4829
.4969
.4814
.4857
3.0
3.1
3.2
3.3
3.4
.4771
.4786
.4871
.4886
.4900
.4928
.4955
.4997
.5011
.5145
.4914
.5079
.5211
.5092
.5224
.5353
.5024
.5159
.5038
.5172
.5302
.5051
.5105
.5132
.5185
.5315
.5065
.5198
.5328
.5237
.5366
.5263
.5391
.5276
.5403
.5289
.5416
.5340
.5378
.5428
.5465
.5587
.5490
.5611
.5729
.5843
.5955
.5478
.5599
.5453
.5502
.5514
.5527
3.5
3.6
3.7
3.8
3.9
.5441
.5539
.5658
.5775
.5888
.5999
.5551
.5575
-5694 .5705
.5809
15635
.5752
.5866
.5977
.5647
.5763
.5877
.5623
.5563
.5682
.5798
.5911
.5670
.5740
.5855
.5966
.5717
.5821
.5933
.5786
.5899
.6010
.5832
.5922
.5944
.5988
4.0
4.1
4.2
4.3
4.4
.6021
.6128
.6232
.6042
.6149
.6253
.6355
.6075
.6180
.6284
.6385
.6484
.6031
.6053
.6064
.6085
.6191
.6096
.6107
.6117
.6222
.6138
.6243
.6345
.6160
.6263
.6365
.6464
.6170
.6274
.6375
.6474
.6201
.6304
.6212
.6314
.6415
.6513
.6294
.6395
.6325
.6425
.6522
.6335
.6405
.6435
.6444
.6454
.6493
.6503
4.5
4.6
4.7
4.8
4.9
.6532 | .6542 .6551
.6628 | .6637
.6721
.6812
.6902
.6609 | .6618 || |
.6702
.6561
.6571
.6580
.6590
.6599
.6693
.6646
.6656
.6749
.6665
.6758
.6848
.6675
.6767
.6857
.6684
.6776
.6712
.6730
.6821
.6911
.6739
.6830
.6839
.6928
.6866
.6955
.6785
.6875
.6794
.6884
.6803
.6893
.6981
.6920
.6937
.6946
.6964
.6972
5.0
5.1
.6990
.6998
.7084
.7007
.7016
.7101
.7024
.7110
.7033
.7118
.7050
.7135
.7042
.7059
.7067
.7076
.7160
.7093
.7177
.7126
.7143
.7152
5.2
5.3
5.4
.7168
.7251
.7332
.7185
.7267
.7348
.7193
.7202
.7284
.7210
.7292
.7235
.7316
.7396
.7218
.7226
.7243
.7324
.7259
.7275
.7356
.7308
.7388
.7300
.7340
.7364
.7372
.7380
log.o元=0.4971, logio2z=0.7982
の
?456789 01234 56789 01234567 89 01 234
222 22 2 2222 33o sa る333 34
ーN 34
Qo5 55
4444
Answers
Apa kebingunganmu sudah terpecahkan?
Pengguna yang melihat pertanyaan ini
juga melihat pertanyaan-pertanyaan ini 😉
Recommended
詳説【数学Ⅰ】第一章 数と式~整式・実数・不等式~
8936
116
詳説【数学Ⅰ】第二章 2次関数(後半)~最大・最小・不等式~
6085
25
数学ⅠA公式集
5656
19
詳説【数学Ⅱ】第3章 三角関数(前半)~一般角の三角関数~
4874
18
差し支えなければベストアンサーの認定をお願いします❀(*´▽`*)❀