ノートテキスト
ページ1:
3 三角比性質 It cos Acosxsin, cosBe sin Asin C để sinh Arsin Bt sinh * sin² a + cos³d=1 7 =) sin + A+ sin+B+ sin²C = (1-cos³A) + Cl-Cos<B) + sin³ C ⇒ 2 - [cos³ X sin ²C + sin²xsin³c) + sin'c C ⇒2 - sin² ( [cos' x + sin x] tsin >( => 2-sik?<+ ship?c (2) EM A sinzo + sin³ 0=1, #It sin? Q+ sin 50+ sin 6 Q = ? *sin² = 1-cost'> A=2 = 2 Cos?Q= sin 3 Q = cos 4Q= sin ba ⇒ | + |- cos³d + (1-cos³d) sin³ @ + custa R = 2 - Cos² + cos <Q- Cos 4 α + Cus 40=2 A: 2 (3)設fm: =CosnQ + Sin"Q,neN)求3f(4)-2f(6)+f(2)之值為何? fill = cos a+ sind. f(2) = cos =Q + sin 3Q = | f(4) = cos40+ sin4Q = (cost @ + sin²)² 2 custsin³d =1-2003² sin² f(1) = cosb@+ sin 6 Q = (cos²d + sin 2013 - 3 Cos=@sin+Q - 3c54d sin³ = = |- 3 Cos² sinta - 3 C0340 sin² Q (cos² + sin + 0) = = |` = | 7 Cus 4Q + sin 40 + 2 sin?d cos?R=|⇒ sin a cos Q=0 73f(4) - 2 f (6) + f(z) = 3-6 cos=@sind -> + 6 cos² (sin 4d + 6cos 40 sin? = 2- • 6 cost sind [1 + sin² Q + cos²0] => 2-6x0×2=2 A: 2 +1
ページ2:
(4) ƒ x² (tand + =) X+2=0,TA-AR 3-252, te sind cos (=? tand X = 3-2 X-6x+1=0 » qß-6x+1= x²- (tand+ tang 1x+2=> [tand+ Fond +6)X=1 X X=3-252 => tanQ+ =9+2√2 * sin Q=Q, cosQ=b. sin & cus&= ab. fand+: = +1 =9+252 7 92+62 + a ab =9+2527 alb =9+252 = ab= 9+2√2 => ab= sind cosα = 9-252 9+2√2 73 A 9-25 73 ((5) 設日為第二象限角,若兩方程式+3(csQ)X+1=0與x=(simo)x-6=0 恰有一相同解,則tan Q= ? sind 76 ***= tx 2²+3 cos &α +1=0 = cosα = tando 21 d = sindα-6=0 = sind = d² 66 tand = sind 32 = -323718 CuSQ 變 .x sin a+ costa-11+> A tan Q==== A: -== | (6) 272 90° ≤ 0 ≤ 180°, 1974 cos-α +2√6 sind -5=0, EQ=? JE (註:sn15°= 18+, sin 18° = √51/1) 90° ≤ @ ≤180° 4 * Cos³ + sin = cost Q = \-sin² 41 1-sin) + -4 sin+sina -1=0 56452 寸 5 SixQ= SinQ = 56-52 ⇒ sind = -258±√F= √(±52 8 4 {d=180°-15=105° 0-180-15=165 A=105°165°
ページ3:
(7)試求 (8; 135 135 Σ sin² (zk°) ¿ 11 =? K=1 Σsin (zk°) = sin 32°+ sin 24° + sin ² 6° +.. + sin' 268° + sin² 270° |=| = (sin '20+ sin 2288°) + (sin² 4°+ sin 266°) +.. + sin 2270° =) (sin ³ 20+ sin ³ (90x3-2)°) + (sin³ 4° + sin² (90×3-41°) + ·· + sin³ 270° =) (sin 22°+ cos²2°) + (sin 24° + cost 4°) + ... + (-1)² 71x 134 1 1/2 +1 = 67+1 = 68 A=88 1/ 100°< 0 < 225°, 14, 16 19 √1 + zsin@cusa + VT-2sin@cos& = ? √ sinzQ+ cus² & +asina cosa + Sih² + cos - 2sin & CuSQ -=) | sin at cos @| + | sind-cosa | ⇒ -sina-cosa estina- cosa ⇒-2005 *180°CQ< 225° = cos &co, sih aco > cos & <sin Q A=-2005 (9)將半徑1之半圓弧分成180等分,設等分點為只、屋、屋... Pinq,$ { APK ZTE = ? 7 -2 Σ APK = AP₁ + AP₂² + AP3 + .. + Aping ⇒ BPing ⇒ AP₁ = Bir AP₁ + APin = AB = 2² = 4 7AP₁² + B₁₁ = AB² = 4 = B AP90 + BP₁ = 4 = 2 AP₁ = AP₁ = √2 1179-1 (AP₁² + AP₁m) + (AP² + AP³ ³) + ... + AT 9 = 4 × 12-14 + (2)² = 358 1=358 A FA
ページ4:
(10) a = sin 1198° b = cos(-460°). C= tan>09% d= tan 430°, 試比較a、b、c、d的大小? A = sin ( 360° x 3 + 1180°) b=cos (780°-480") #d>>c>b = sin 118° = Cos (+100°)=C05100 140 =5in62070 => Sin 62° sin 60° 7562=97 = Cos(100°-90°) =-sin 10° <o C= tan (90°x2 + 290) = tan 29°70 => C < tan 30° =) << == (1) * AB = ? + d=tan (360+70°) = tan 70°>0 = sih '70'sin 60° > cosque cosgoo A÷d>a>c>b A (cosd, sind). B (>cosß-2 sip), Bd=126° Aǝrt B=1=2 70 2 A(cosol, sind)" A 1722-2×2×1× (-) =5+2=1=AB → AB = √7 BCZcosp.-2sinß) A:√7 (2)如图所示,矩形ABCD中,=3,死=2,若將此矩形放在距離為了 的兩平行線山、L2之間,且使A.C分別落在2.山上, X tan Q = ? (26)²+ (a)²=9 a+b²=4 f=⇒28=36 * 0+x=3 = 2y=34 Lz · x + y = 9 (畢氏定理) 13 07624 = tanh = a = a = A 42
ページ5:
(3) △ABC中,三邊長9.b.c對應的高為ha-kb.hc,如图所示。 abc_ 2 tanA=1. tanB = 2. tan C=3, * hahshc 之值為何? B *tan A== C a ⇒ sinA=亢 tan B=2 = sin B = A 1 tanc = 3 ⇒ b 3 =) sin C = √ X SinA = k sin B = ha sin c = he a > abc : Tahihc sinA sinB sinc 1 2 3 归 A:f A: (14) ABC BC. CA. ±ha-6. hb = 4. hc = 3. 求COSA及△ABC的面積為何? a=b=C= | | a 邊長比》4K,3k,水 = = = = 2=3=4 4K ⇒ COSA = 2x44x3k = 34 = C B >K 16k²+9k34k² △ABC = = xaxa = zxzkx6=6k = 海龍公式 8 6k = k*k* kxk ⇒ k² (1 ≤ > k= √ * * - = (S= 24+4+4K = 2; = A: T
ページ6:
(15) B-C ĀDA 1 ¿+ Q L = Rk, AD=4, AB=BC=1; 求印與COSLADC為何? * AC=Y. CD = x C 180- y Q 2 0 2 1³²+1² - 2005 (180-0) = y² x+4-4xcusα=4 +8=1600530 ⇒ 2+2000=42 x²+ y²= (2+2) = 16 = 16c0540 + 2003 (+2= 16 = 16cos³0+2cus f-14=0 => ({cos(-1) (cos(+1)=0 = cos(=}}, \| (1997) CD = ADxcosQ = 4x. = = = √ CD = A: [ COSLADC= } (16)圓內接四邊形ABCD中,B=3. =2.6=3.LABC=120,求雨長=? A! B AC = 9+4 + 2 x x x 3 x (+) = 19 = AC = √19 ** 10 = y = y + 9 = £y x = = 19 7 y² 38 -10 = 0; - →) (y-5) (4+2)=0=y=5 *圓內接四邊形公式 > 3×3+2×5=5斤x師 => 9+10=√19 × BD => BD = √19 A-519 (17)如右图,在△ABC中,AB=8,死=7,CA=6,∠BAE=LCAE> E點在△ABC的外接圓上,求線段之長二三 B AB = AC = BD = PC = 4=3=71471/7 *ADAB XAC-BOX DC · → AD² = 8x6 - 4× 3 = 36 = AD = 6 : ⇒ 6xy = 4x3 y=2» AE = 6+2 = 8 => y=2=⇒ A-8
ページ7:
(18) & ABC, a=3. b=4. tanA=4, * C=? * SSA = ÁTF4 = c TA FFA Á‡ : B 5 3 =) Cus A = = =) (=5 A C A C 3 3 = 4²+C² - 2x 4xcx Cu SA =) 9 = 16+C² 8xCx* = 50-320 +35=0 ac=7.5 A = 7.5 (19) # SABC#, AB = 10, AC=9, COL BAC = XP-Q5981tz , 邊丽、死上使得△APQ之面積為△ABC面積之一半, 求權之最小可能值為何? P 10-x B x A y 19-y *AP=x, AQ=Y, COSLBAC= \² = x²+ y² – zx yxz² = x=y² &xy △APL △ABC IXysinA zx9xbxsinA ⇒ y=45 **£= x+ y² > > √xy² = x + y² = 90 =2xy 2 ⇒版:y=x45 ==些 (20) 8 ABC $, AB=5, AC=2, BC=x (3<x<7), LABC=0, 則cosQ之最小值為何三 A 5 B. Q C 25+X-10XC05Q=4 = x² 10% cosQ + f = 0 = P >0 (¥) ¾)>0) ⇒ 100 cost - 84 >0 ⇒ cos2d 1 {cos acoso 恤 A = √1 5
ページ8:
(21) 412 13 559 55-7 AB = 30, LCAD = LCBD = 45°, ADX BC 730₤ LAOB= 75°, *共圓 0 A 30 */ CD=X 450 B 在△CDA中: 在△ABD中: x 30 =2R 25° =2R Sin45° 57730° B 30 x A 30 = sin30° = CD=30√2 A=30√2 5i445° (22)如图所示,在河岸一邊的兩點A.B.測得對岸兩點PQ, 得LPAQ =60°,∠Q AB=45", <PBA=30", ∠QBP=750,且AB=2公里 則PQ兩點間的距離為多少公里? Q 河流 ② sin4jo BP Sin1050 BP = √3+1 BQ 54450 = 2 Sin300 BP 4 33Q=252 B = A 1450 B → P₁ = (√3+1) + (2/2)² = 2x (25)([3+1) Cos15° ⇒ 瓜²= 12+23-4⇒ā-18+255 A:S8+鸡公里
ページ9:
(23)從平面的A、B、C三點,測量山頂的仰角均為30; 且LABC=450,AC=300公尺,求山高為多少公尺? A 山頂→ 300 =2R = R = 150√2 sin45p 1300m R=15052 | 150√2×53= A:506公尺 (24)一船向東370南航行,速度60浬/時,於上午9時, 測得一島的方向為東 530北,至中午12時,再測得 該島的方向在船的北23西,則中午時船與島 的距離為何? 9時 30° 西 1530 60x3=180 30° 180 d = 180×2 = 120√3 √3 A-1205331 (25)從地面一直線上三點A、B、C,測得一山頂的仰角分別 為30°、45、60°,若山頂的垂足與A-B.C不天線, 且曆=300公尺,死~200公尺,求山高為多少公尺 1h = A 130° h 300 1450 200 B E E 4.4.4 130° D ⇒ Stewart 公式: (h)200+ (+)’300 =k㎡(500). ⇒ ¥h=5h²+ 300000 ⇒ h²=15000 + 300 000x500 >h=100515 A=100515/är
ページ10:
(26)從地面上共線A、B、C三點,測得一山頂的仰角分別為 30.45.60°,老山頂的垂足與A、B、C不共線,且=2008公尺, 既=200g公尺,求山高為多少公尺 D 300 53h D 2008 130° h B 心 D B145° E 2008 55h A LU ⇒中線定理 => (5³h) + ( 1 )² = 2 [h²+ > auf]> h=100456 A=100456/GR (27) B A ABC, AB = 3. BC=4, LA= 3LC, & sin² (=? 3 ㄌ A D A = cos Q = E ⇒ BD=3, PC = 1. AD = 1 CD Stewart 公式求:派 3³x|+ AC³× 3 = 1*+ (3+1+³×1×4 #AC CE = ⇒ Cos²Q+sm²Q=1 A = 12 | > | - cos 40 = sin ² Q = 1 - 1/72 = 1/2 = sin³ (
ページ11:
(28) △ABC中,∠A的内角平分線交於D,AC=4,AD=3.DC=2, * AB = ? ABX BD=4 x Q 4 *內分比⇒ x=4=y=232y=x B y 2 C+Stuart定理解未知報: ⇒ xx z + 4xy = 3² × (y+²) + yxxx (y+z) +&x=zyst> ⇒ 2x (ay) + 3y - 2y ² 48 = 6y²+39-18=0 ⇒ (y+2) ( zy− 3) =ð y = = AB = × 2 = 3 A= 3 (29) 如图所示,△ABC中,>花,過A的高=12,LA的內角平 分線段AD=13,過A的中線丽=15,則既 = ? M=X MD=4. DH=5 B ㄈㄣ 7-9 C M D H AB = √12 (79) FC=x-9 AB *內分比:麗= AC = √12²+17-912, BD=x+4. FC=x-4 : = √12²+(749)2 X+4 ⇒合分比:号 c-d = √12717912 ⇒ 古 ⇒ 12²+(x+9)² - (1+4)2 12717-912 = => 91x-4)²= 4[12²+ (x-9)2] ⇒ = =) BC= 2x = = 2x18x 2x8X ⇒ 12717912 [π = 1756 5 125105 5 A= 125105 5
ページ12:
(30)在△ABC中,CA.LB.LC的對邊長分別為9.13.6,若 tan 1/2 x tan ₂ = 1, 1 C=? x *內切圓: z √x+y=c 3 X+2=13 7 x+y+8=> = 22+C Y+z=q #S= Zz+C ( ) tan 12 = 1, tan — 1 = 1/1 7 48 = = FDA (rxs) = s(s-a) (s-b) (s-c) = r²(x+y+ z) = xyz 海龍 内切圆 7 竖(x+y+z)=8 ⇒x=1+2 A-14 * X=YTZ = 2x+Y+7= ( +13 ⇒ >X+ 9 = C+13 ⇒ 2x=c+4 x+7+7=22+6=9= 1 + 2 = 16 7 18 - C+14= C-14 (31) 說&ABC三邊長分別為7.8.9,若△ABC内切圓切三星於 D.E.F,求△DEF面積? B S= *ODEF =OIEF +OIED + DIFD E b 180fy a a+b+c= 1+1+9 = 12 z ABC= rs = 12r JABC= abc 7x8x9 41 =1255 4R ⇒R ODEF=sin(-A)+ y² sin (180-13)+ 154 (180-c) = ±³ (sin A+ sin B + sin c) = r² + 7 2R 氣 ra+b+c) X =(rs) 2 1 (rs) = 1/2 <ABC= DEF >R *ABC= √12x 3x4x5=1255 = √5 汞 =
ページ13:
(3)若AABC内接於半徑為1的圓且△ABC的面積為1, 則 sinAsinB, sinC 為三邊長的三角形面積為何? 正弦定理: a b C = = sin B SinC =2R 7 0 ABCN & Sin AsinB sin () SinA =2R = 1x2 a b ShA sin B ~ ⇒面積比: ㄧㄤ= = C (ShAJ 621=4 sinc SinAsin B sinc <ABC 4 C D 3 (33) #2 } FF ÁF, SABCIF, LBAC=90%; Œ ÑD = DE=BE = 2 = 3=5, 1 <BAE= 2. LDAE = B. LDAC=ɣ, ste sinß sind-sinɣ = 2 * AABC= SACD + SADE + CABE a A E 9 b = x + xxy + xybsing y 12 B b 2 (5+3+2) × 1 × ab = ±≤ xax sind⇒ sind = 3 3 (5+3+2) x = {xab = ==× xysinß = sinß= Toxy 5+1+2) x = xab = = = = x y b sind = sinɣ = a (573+2) sin ß 398 Taxy 司 = = 3 Sindsinɣ A = 3 ky (34) 如图所示,△ABC中,兩平分LBAC,M為死的中点,即上丽, B AB=14. AC = 20, * MW = ? 14 W+ 14 M * BN = ND =|=| =) CD = NM = 2 =|=6=3 A-3
ページ14:
(35)如图所示,△ABC中,∠C=90°,且=2DE=BE>已知ACD=d sinß LDCE=B. LECB=ɣ, ife sind sing = ? A 2 D 3 b *ABC APC+ CDE + ACEB ⇒正信定理,面積比求解 SABC= ab B & ADC = = axsind ACDE=xysm B > CEB = 4b sinɣ 0+x+ab = ±axsind sind Bab ③. -X -x=-=-=ab = = = yb sinɣ 11x+ab === xy sin ß= sinß = Tray sinɣ= sinß => sind-sinf = 3ab TAXY 69 = 4 xxx xiy 69 A₁ 44 (36) * A FI ABCD 4, AD = 5, BC = 10, EL AD // BC, LADC=120°, 若梯形ABCD 有一個內切圓(與四個邊都相切的圓) →則梯形ABCD的面積為何? 5 *DC=X D AB=5-X 15-2753x ABCD = (5+10) × √xx 2X = 55 x B: ?-X A' 10-2X D'x' * ${/}} #s⇒ ÃD + EBC = AB +CD = 5+10= >X+AB AB=15-2X = (√39) + (5-7)² = (15-2x)² ⇒ x=4 □ ABCD = 1553 × = 15√3x4 = 30√3 Z A=3053
ページ15:
(37)已知銳角三角形ABC外接圓的半徑為8,且圓心到限 的距離為3,到的距離為6,則 * AL = X DE =y 二! B D 3 SS 15 D BE = √64-36=257 AD = √64-9 = √55 *餘弦定理求yor圓冪求解 ⇒ B.O.DE共圓⇒圓冪(托勒密定理) 6 x√53 + 3x2√7 = 8y = y = 3√7 + 3√55 180- B E ⇒ y=> x= 2 4 3√7+3555 A= 2 (38) 設銳角三角形ABC的外接圓半徑為8,已知外接圓圓心 到存的距離為7,到死的距離為2,則△ABC的面積 為何 B 215 28 AF = [64-49 = JTB BD = 264-4 = 2555 1455 *B. F. O.D# 117 BF XOD + OFX BD = JB XDF ⇒ Jī5x2+7x2575 = 8XPF ⇒DF = 25TF D 2515 C AC 4575 =) AC = 4√15 Z√TS *SABC= FAX BC x sin B = = x²JTS x 4JTSX sin B = 60 sin B ✓0B=2R DF * =2R =) =875 SinB sin B ⇒ SinB = ⇒△ABC=60xsinB = 60x4+ = 15515 匹 A=15515
ページ16:
(7)如图所示,為正方形ABCD內部一點,且丽=2.803.死=4,則 求防反正方形ABCD的面積為何! A D D AP² + PC²= PD² +PB² ⇒ 4+16 = PO²+ 9 B ⇒ = T D 冷AB=X ⇒ DABCD = x2 x B P 190-0 △APB中: ¥5 6X 0 PBC4: C x ⇒ sih20+cos2d=1 x79-6xcosQ=4⇒ cosQ= x+9-cu (90-0) = 16 = cos(90-0)= Cos(90-0)= 54 DABCD 10-35722 ⇒ (17) + (x²-1) = 1 > x²-20x²+37=0>> X² 10±357 1 ½ SFD=√TT A: [面積:10+3斤 (40)在△ABC中,a-b.c是三個內角A、B、C的對邊長,若 △ABC的面積 S 滿足S=a²(b-c)²,且b+c = 34, 求△ABC面積的最大值為何? *算几不等式: JABC = bc sin A S=α²= b²-c²+2bc |cos A = 6+0=92 26c ⇒4 sinA=2bkcosA+ 264 ⇒ ==sinA=2cosA+2 4cosA-sinA+4=0 ' => > bc cosA = b² + c = a² πt'xs ⇒2bccosA+26C sin³A+ Cos³A=1 ⇒ sin A=0. ⇒ △ABC=XX员 sin² A+ cos² A = 1 :68 A:68
Other Search Results
Recommended
Recommended
Senior High
數學
請問(4)要怎麼找舉例角度?
Senior High
數學
這三題絕對值
Senior High
數學
高一數學 選擇第二題 想問怎麼判斷 謝謝 感恩😊
Senior High
數學
絕對值
Senior High
數學
寫練習題的時候不太確定但還是寫下去了 對答案發現是對的真的非常開心 但看了詳解發現方法不太一樣 但不太確定是真的碰巧還是我這種算法其實也可以 如果不可以那請問是哪裡錯了呢?🙏🙏🙏謝謝數學大神們 問的是2.3.題 謝謝
Senior High
數學
請問這題🙏🏻🙏🏻
Senior High
數學
阿阿阿阿阿阿啊我看不懂解析🫠🫠 算出有48個跟105×4+17=437有什麼關係
Senior High
數學
請問這題a的範圍為什麼不用滿足我寫的那個
Senior High
數學
請問為什麼不能照原本的方式列式?
Senior High
數學
Comment
No comments yet