年級

科目

問題的種類

物理 高中

請問第28題怎麼算?

下 9重量 2能減滬能動馬連提供的動力。一般而言。配重所皓配的重症 窒 2 時所陣林最大哉晶和2說以 二。親大樓電梯規格如表所示, 計算時請忽略鋼誠及晤動輪發 。 試回答下烈問題: 字 蟬。刀重力如速度為JO 公選-秒 電梯規格 項朋 規格 空事車訂重量 7S0O 公斤重 最大載重 (不包含空車訕) co 高速度 說 y 0 1全玫和 2 設計師想要設計這 和20 位電梯設計師想要設計這臺電梯。根據上述短文,配重應設計多少公斤重? ~ 2一 (A) 500 (B)550 (C)600 (D)650_(E)750。 蟬 2 ( 二) 一位電梯設計師想要設計這臺電梯鋼索的粗細 ,則必須讓車廂在最大載重的狀況下。以最大加速度加速至最高速 度的 ee 過程中,找出鋼索的最大張力值T。根據法規必須讓鋼 索可以承受的 張力極限值 Tmax 為最大值的 10 倍以上(Tumax ee 全10T7 。-如表為工廠現有五種鋼索其粗細對可承受 張力極限值之關係。根據表所示,這臺電梯至少應該選用直徑為多少 毫米的鋼索,才能符合要求? (A)16 (B)18 (C)20 (D)22.4 (EE)25。 鋼索直徑 ( 毫米) |張力極限值 (千牛頓) EE 了18 W人2 132 攻戰 ME 5計 心2 (W 若電梯在載重極限時失感失去動力。此時申動輪可自由轉動,且不計驅動輪質量,車廂的到車 “ 夫靈‧若牆此狀況類比為一不考護摩折的阿特午德機‧如圖所示。 此時電梯的加速說大約在力加 2 1 度的歲售? (A))(B)y (C)5 (D)5 (E)5 汪戰作 ee 計 謂語說 3

待回答 回答數: 0
物理 高中

18題,感謝

10. [2D and 3D motion] Show that the potential energy U(r) ofFa particle of nass jat aa distance r(> 員 from a planet of Inass 4 and radins 戶話 11. [The cross product] Caleulate the cross product A x B, assuming that A and B both lie in the x-y plane and have the respective nonzero components 4,, 4, and 妖,, 且, 12. [Angular momentum] Show that 主r, the instantaneous position ofa particle of mass mu with respect to a certain origin O, is parallel to its acceleration dv/吧, then the time Tate of change of the angular Inoimentum L with respect to the given origin vanishes 13. [Theorem 了 Show that the torque-angular momentum formnla _箇 7二 is also valid for a two-particle system 放 the origin lies at the center of mass 14. [Theorem IIH] Two particles of respective Inass ml and 2 are connected to the ends of amassless rod and Inove in the uniform gravitational field g ofthe earth. (a) What is the acceleration of their center of nass Telative to a Newtonian origin O? (b) Show that the angular Inomentum of the two particles about their center of nass 生 aconstant of the motion. 15. [Moments of inertia] Calculate the moment of inertia ofathin, uniform rod of mass m and length / about an axis perpendicular to the rod and at a distance q from one end. 16. [Rotation about a fixed axis] Consider the rotating cylinder in Figure, and suppose that A7 sg, Fo 三 0.6 Nt, and @ 二 0.2m, Calculate (a) The torque 7 acting on the cylinder (b) Ti ngular aceeleration q of the cylinder 17. [Work and kinet: instant Totat eenergy] A 40-kg homogeneous sphere of radius 10 cm is at acertain about ashaft through its center at 600 rpm. Assuining that a constant fric itude ets so that the sphere comes to rest in 10 seconds, Calculate th tional torque ofthis torque. 18. [The physical pendl end and allowed to oscillate freely in a horizontal plane (see Figure) m] A uniform Tod of Inass ru and length / is suspended at one (a) What is the period of this physic lpendulum for small amplitudes? (b) Ithe velocity u0 of the mass ce Hulum is initially released at rest in a horizontal position。what is the er at a subsequent instant when the Tod is vertical? (ec) Calculate the vertical and the horizontal components of the force on the rod at the point of suspensic 19 and rotations] Analyze the motion of a homogeneous sphere of mass 和7 and Tadius dq, which rolls without slipping down a fixed inclined plane of angle # 20. of angular momentum] A Inan has ainoment of inertia 五 about the = axis. He is originally at Test and standing on asinall platform which can turn freely. Ifhe is handed a wheel which is rotating at and has anoinent of inertia 了about its spinning axis, determine his angular velocity 放 (a) he holds the wheel upright, (b) turns the wheel out 9 二 90?, and (c) turns the wheel downward, 9 二 180?. Neglect the effect of holding the wheel a distance d away from the z axis

待回答 回答數: 0