Mathematics
高中
已解決

この問題のように確認がいる問題と、確認がいらない問題の違いはなんですか??

接線 ( Think 例題 87 直交する2曲線 1 接線の方程式 195 2つの曲線 y=√x, y = e^x が直交するようにαの値を定めよ. 考え方 右の図のように、 2つの曲線 y=f(x), y=g(x) が共有点をもち、 その点におけるそれ ぞれの接線が互いに垂直に交わるとき 2つの曲線は直交する という. **** 高均値 y=f(x) 共有点のx座標をおいて,次のことに着目する。 点を共有している 接線どうしが直交する (f(t)=g(t)) (f'(t)g'(t)=-1) y=g(x) x mi 解答 2つの曲線 y=√x... ①y=ex......( ・・・②の共有点の x座標をおく。 f(x)=√x とすると,f'(x) = _ より、①の共有点 における接線の傾きは, f(t)=_1 2√x 2√√ 第4章 g(x) = e^x とすると, g'(x) = ae** より ②の共有点に 「おける接線の傾きは,g'(t) = aet ①と②の曲線が直交するのは, 共有点における接線が直 交するときであるから, f'(t)g'(t)=-1 より .ae=-1 ......③ 2√t また, ① ② より √t=eat 1 これを③に代入して, 120=-1より. a=-2 y=√x 逆に α-2 のとき ④を満た す共有点(t,√t) が存在し, ③も 1 y=e-2x よって, a=-2 0 t Focus 2直線が垂直に交わ るとき 2直線の傾 きをmm' とすると, mm=-1 共有点の座標は, ① より(t,t), ②より, (t, eat) でこ れが一致する. より 2つの曲線 y=f(x),y=g(x)が直交する ←2つの曲線の共有点におけるそれぞれの接線が互いに直交する ←共有点のx座標を とすると,f(t)=g(t), f'(t)g'(t)=-1 練習 2つの曲線 y=4p(x+py-4pxpp≠0)はかの値にかかわらず. 87 つねに共有点で直交することを証明せよ. *** p.205 10

解答

✨ 最佳解答 ✨

③かつ④ ⇒ a=-2ですが、
③かつ④ ⇔ a=-2かどうかはまだ不明です
そこで、a=-2のとき③かつ④、
がいえるかどうかを確認します

同値な条件を答えなくてはならないので、
同値かどうかが最大の注目点です

「確認がいらない問題」の例を挙げてもらえれば、
説明できるかもしれません

留言
您的問題解決了嗎?