✨ 最佳解答 ✨
OP²=(cos2θ+sinθ)²+(sin2θ-cosθ)²
=cos²2θ+2sinθcos2θ+sin²θ
+sin²2θ-2sin2θcosθ+cos²θ
=2-2(sin2θcosθ-cos2θsinθ)
=2-2(sin(2θ-θ))
=2-2sinθ …ウ~オ
1=2-2sinθ
→ 2sinθ=1
→ sinθ=1/2
→ θ=π/6,5π/6 …カキ
sin2θ+cos2θ
=√(1²+1²)・{sin2θ・1/√2+cos2θ・1/√2}
=√2・sin2θ・cos(π/4)+cos2θ・sin(π/4)
=√2sin(2θ+π/4)
-sinθ+cosθ=
=√(1²+1²)・{sinθ・-1/√2+cosθ・1/√2}
=√2・sinθ・cos(3π/4)+cosθ・sin(3π/4)
=√2sin(θ+3π/4) …ク~サ
sin(2θ+π/4)=sin(θ+3π/4)
これが成り立つためには、
→ 2θ+π/4=θ+3π/4+2nπ…① もしくは
2θ+π/4=π-(θ+3π/4)+2nπ…②
n=1のとき
→ ①θ=π/2、②3θ=2π
→ θ=π/2、θ=2π/3
n=2のとき
→ ②2θ+π/4=π-(θ+3π/4)+4π
→ 3θ=4π
→ θ=4π/3
よって、θ=π/2,2π/3,4π/3…シ~ソ