Mathematics
高中
已解決

マーカーをつけたところがなぜそうなるのかわかりません。教えて欲しいです。

12 2012年度 文系 〔3〕 以下の間に答えよ。 (1) 正の実数xyに対して +2 x y ~( が成り立つことを示し, 等号が成立するための条件を求めよ。 (2)nを自然数とする。 個の正の実数 α1, ..., am に対して (a)+ … +α) ・+・・・+ B が成り立つことを示し,等号が成立するための条件を求めよ。 ポイント (1) 〔解法2] のように (左辺) (右辺) を計算してもよいが, 〔解法 1〕の ように相加平均と相乗平均の関係を用いるのが自然である。 (2) 左辺を展開すれば, (1)が利用できる組が多く現れるので,その個数を確認すればよ い。 a-1 1 + a. an an an an + + + + 1 a1 a2 a3 an-1 a a2 + ai a-1 an + + = +n α2 a a3 a an an-1 ここで, arai + ai ak a (1≦k<l≦n) の形の項はC2個あり>0.0なので (1) より +z2 (等号成立は のとき) a ak したがって n(n-1) (左辺) ≧2m C2+n=2. +n=n² 2 また, n=1のとき, (左辺) =α・ a1 1=1, (右辺)=12=1で等号が成り立つ。 以上より (a+…+a) +...+ 1) ≥n² (証明終) 等号成立の条件は,n=1のときは任意の正の実数, n≧2 のとき, すべてのk.I について, a=a が成り立つ場合なので a a2 an ...... a1= a2= = an ( 1 1 〔注〕 (2) (α+α+ … +α) + + ··· + \aa2 (+ の展開に (証明終) ついては,右のような表を考えれば対角線上に1が並び、 対角線に関して対称な位置にある2つの数を組合せれば よいことに気づくだろう。 11. Q2 a 1 a₁ (1 1 a2 Q2 解法 1 (1)x0,y>0より10.50なので,相加平均と相乗平均の関係より 2x +22 すなわち +522 x y x y xy 等号成立は,=のときなのでx=y2 xy x>0,y>0より,x=yのときである。 ……(答) 2) n≧2のとき (a1+a2+…+an) + +・・・+ a a2 an a1 a1 a1 = 1 + + + + a2 a3 am a2 a2 a2 +- +1+ + + a1 a3 an a3 a3 a3 + + + 1 + + a2 an 解法 2 11 a Q2 an an am 1 (1) 2+1-2= x²-2x+y2(x-y)^ -≥0 (x>0, y>0) xy xy xy (証明終) ゆえに xy 等号成立は,x-y=0 すなわちx=yのとき /
整数 数列 不等式の証明

解答

✨ 最佳解答 ✨

図に描きました
数学は手を動かすことが大事です

きなこ

わかりました!ありがとうございます🙇‍♀️

留言
您的問題解決了嗎?

看了這個問題的人
也有瀏覽這些問題喔😉