Mathematics
高中
已解決

この問題の四角で囲んだ箇所の計算が分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

1 等差数列と等比数列 (39) Think 例題 B1.16 等比数列と図形 **** ¥ Ai(1,α)/l 直線 y=ax (a>0) を l とする.ℓ上の点 A (1, α) からx軸に垂線を下ろし、その足B, からに垂線を下ろし, その足を A2 とする. さらに点Aからx軸に垂線を下ろし、その足 を B2 とする. 以下これを続けて, 線分 A3 B3, A,B, ・・・・・・ を作る. また線分ABの長さを l とおく. (1) l1, l2, l3, ・・は等比数列であることを示せ. Az A3 O (2) li+ l2+ ls+ ...... + ln を a で表せ. (明治学院大改) 「考え方」 解答 y=ax と x軸のなす角を0とおくと, △AOBABABA2B2 A2B2A3co・・・・・・ より 0=∠AOB=∠ABA2=∠B1A2B2=∠A2B2A=...... (1)∠AOB= 0 とおくと, lAa より cost=- OB_ 1 OA₁ √a²+1 △ABA2△A,OB より, ∠ABA2= ∠AOB=0 したがって, A2B=AB cost=licoso 同様に, l2=A2B2=A2BICOSA B3 B2 L B₁ x A (1, α) より OB= AB=αであるから, OA₁ = √√a²+12 △ABA2とAOB ∠BA1 A2=∠OAB ( ∠AAB=∠ABO △ABIAA OB1 よって, ∠ABA2=∠AOB AAOBAA₁B₁A △BA2B2 の相似」 1 1.T =licoso.cost=licos'0= a²+1 なので, 1 同様にして, ln+1= -lm が得られる. '+1 よって, l1, l2, ls, ...... は, 初項 α. 公比 の等比数列である. +1 (2)0 より, 1 a²+1 a²+1 li+lz+ls+... + ln a{1-(a²+1)}_a{1-(a²+1)"} a°+1 (a+1)"-1_ (ω°+1)"-1 キ1 なので、 A2B2 を A B で表す できる. 1 初項 α,公比- a²+1 数列の第n項までの a a²+1 100% a a(a+1)-1 (a²+1)" dear Focus 図形のくり返し相似条件に着目し、隣接項の関係式を導 練習 直線 y=ax (a>0) をℓとする. l 上の点A(2, 2a) からy軸に垂線を 1.16 その足 B, からℓに垂線を下ろし、その足をAとするさらに点Aから *** 垂線を下ろし、 その足をB2 とする. 以下これを続けて, 線分A3B3, Al * a
1 1 a²+1 a (a2+1)" lit latest....+ln a{1-(a²+1)"} _ a{1-(a²+1)"} α+1 a² a²+1 a2+1 (α'+1)"-1_(ω'+1)"-1 a(a'+1)" dear A2B2をAB できる. 初項 α,公 数列の第 n cus 図形のくり返し相似条件に着目し、 隣接項の関係 直線y=ax(a>0) をℓとする. l 上の点A (2,2a) からy軸

解答

✨ 最佳解答 ✨

約分しているだけです

moon

ありがとうございます!あと、前の部分のa/a^2+1になる計算は理解出来たのですが、後の部分の(a^2+1)^n/(a^2+1)^n-1
の式にするには、どうやって前の式から展開するのかが分かりません!教えてくださるとありがたいです。何度もすみません🙇

moon

訂正です。前の部分の式も後の部分も分子分母が逆になってしまいました。すみません🙇

図の通りです

moon

理解出来ました!ありがとうございます!

留言
您的問題解決了嗎?