Mathematics
高中
已解決

●数学 数列
(2)を階差数列で解いてみたのですが答えが一致しません。式は間違っている気がしないのですが階差数列でやってしまうと答えが変わるのでしょうか…
回答お願いします!

基本 次の数列の初項から第n項までの和を求めよ。 (1) 12,32,52, 指針▷ 次の手順で求める。 9725/1 ① まず, 一般項を求める→第k項をんの式で表す。 解答 与えられた数列の第k項をak とし, 求める和を Sn とする。 (1) ar=(2k-1)^ よって SETT よって ② (第項) を計算。 Σk, Σk2, Σk の公式や, 場合によっては等比数列の和の公式 k=1 1 を利用。+α+b) 注意で,一般項を第n項としないで第k項としたのは, 文字nが項数を表している からである。 270225 士 (2) ak=1+2+22+………+2k-1 ←等比数列の和 等比数列の和の公式を利用して ak をk で表す。 CHART この計算 まず一般項(第k項)をんの式で表す n & @%%d9% = 4²k²—4²k+ 21 k=1 k=1 n Sn=Σak= Σ(2k−1)² = Σ (4k² −4k+1) 2 k=1 k=1 k=1 k=1 (2) 1, 1+2, 1+2+2?, <数列の和と一般 (4=4• n(n+1) (2n+1)-4. -— n(n+1)+n\¯ (1 6 [1] (2) »=1+2+22+ +21_1.(2−1) す (13(+) (第k項で一般項を考える。 n =1/12 (4m²-1)=1/12 (2n+1)(2n-1) 3 k=1 -AS-AD)(1+AS) 3 ST3 1 = n{2(n+1)(2n+1)−6(n+1)+3}}8< < 0₁ ( 10# 3 2(2-1) 2-1 +++83)(1+s 1)S)n=5+(1+n)³nS= 2-1 n Sn=Σak= Σ(2²-1)=2²-1 −(−8) k=1 k=1 のネ =2k-10 1+ 2+2+2 n -n=2n+1-n-2 基本102 k=1 1 (S+08 (3+00) 重要 114 22 05-058-01S1 分数が出てこないように する。 は初項1,公比 2, 項数 んの等比数列の和。 n k [参考] S. = 2(22-1)と Sn=] k=1\i=1 すこともできる。 次の数 よし。
103 1 e 2 Ⓒan =+2₁2²²1 1+2, 1+2+22, 1+2+22+23 22 12 N-1 1 + 2 2₁2k¹ = 1+ ²2 2² +221) = 1 + 2 (2 − 1)²²-21) 2-1 Hon 1+2=2 =2-1

解答

✨ 最佳解答 ✨

求めてるのが一般項になってます
途中まではあってます

ほんとだ、一般項になってました…
回答ありがとうございます!

留言
您的問題解決了嗎?