学年

質問の種類

数学 高校生

真ん中らへんの式で、pについて平方完成する所についての質問で、なぜここで平方完成しようと思うのですか?円のベクトル方程式に帰着するためですか?また、そうするためだとしたら、ベクトル方程式の形は、写真の2枚目にある5個の型は頭に入れるべきということですか?回答よろしくお願いします。

例題 37 ベクトルと軌跡 平面上に ∠A=90° である △ABCがある。 この平面上の点Pが AP BP + BP・CP+CP・AP = 0 ・・・ ① 思考プロセス を満たすとき,点Pはどのような図形をえがくか。 基準を定める D Go ・直 (1 (2 ますか (3 ①は始点がそろっていない。∠A=90°を使いやすくするため。 基準をAとし,① の各ベクトルの始点をAにそろえ 図形が分かるP(b) のベクトル方程式を導く。 例 直線: p=a+αや(カーan = 0 の形 円:1p-d=rや(カーム)(カーム)=0 Action» 点Pの軌跡は,P(n) に関するベクトル方程式をつくれ A えがく 解AB=1, AC=c, AP = p とおくと, 始点をAにそろえる。 ∠A=90° より b. c = 0 このとき ①は Bをかためる 2集より 円かない? と予想。 + ) + ( a − ) · (x − 1) = 0 p⋅ (pb)+(pb) • (p−c) + (b −c) · p=0 32-26-2c p=0 1³ - 2² ² (b+c) · b = 0 3 + 2 1 1 b + c | ² = 0 9 2 b+c = 13 3 b+c 6 (1) sこす動特P = 15-b.c=0 (2) 2次式の平方完成のよう に考える。 0 (祝) る k t k よって b+c 10より 例題 ここで, で表される点は△ABCの重心Gであるか 20 だいたいこ 3 A ブク軌跡から、②は ||GP| = |AG| したがって, 点P は △ABCの重心 (2) 2円か垂Gを中心とし,AG の長さを半径と (1) | 重心G は, 線分 BC の中 点をMとし, 線分AM を 直二等分する円をえがく。 B 2:1に内分する点である。 線さま以 M C (3) 〔別解〕 (6行目までは同様) b. {b 2 sa (b+c)}=0 =0より,AE=2/22 (+)とおくと, 点PはAEを直径とする円である。 と b+c AP EP=0 このとき,中心の位置ベクトルは であり,これは 3 △ABC の重心Gである(以降同様) らまん次以お As 満たす

解決済み 回答数: 1
数学 高校生

例題でなぜ経由点が分かるのでしょうか?どこを経由点にしていいのか分かりません またDを経由するところとEを経由するところは、1つにまとめて8!/4!4!では、ないのでしょうか

【例題】 右図において, P地点からQ地点に至る最短経路の個数はい くつあるか。 P• Q 5 「重複組合せ 異なるn個のものの この場合は,n<r 列に対応させると, る。 【解答】矢印の順列に対応させて数える 求める最短経路を途中どこを経由するかで5通りに場合分けする。 (i) A を経由: P→A → Q 4! 4! -=16通り 3! 3! (ii) B を経由: P→B′ →B→B" → Q 3! 2! 3! ・1・1・9通り 31.-1.1.3-9 2! (Ⅲ) Cを経由:P→C→Q 4! 4! 3! 3! =16通り (iv) D を経由:P→D→Qは,1通り (v) E を経由:P→E→Qは,1通り ←PAは,→→→ ↑の順列, A→Qは, ↑↑↑→の順列に 対応する。 D Q C B B" B' A P E ↑ (i)~(v)の場合は同時には起こらないので, 16+9+ 16+1+1=43通り 途中, A, B, C,D,E のど こかを必ず経由し, A~E のうち重複して経由する経 路も存在しないので,この 場合分けにモレダブりは 無い。 a,b,cの3種類の 例えば, αを2個, b を求めるのに,次の た順列を考える。 aabbc は○○IC すると, abbbc は C bbbbc は 7個の場所から〇 したがって, C5 a, b, c,d,ea 同様に考えれば

解決済み 回答数: 1
1/199