学年

質問の種類

数学 高校生

マーカーの部分で、 x→∞だと、x>1、0<1/x<1と考えていいのはなぜですか? x→∞の時xの範囲が必ずこれになるんですか?

基本例題134 関数の極限 (4)… はさみうちの原理 0000 [3x] (1) lim 次の極限値を求めよ。ただし,[x] は x を超えない最大の整数を表す。 x1x Xx ¤¨ (2) lim(3*+5*)½ X11 p.218 基本事項 5, 基本 105 225 指針 極限が直接求めにくい場合は、はさみうちの原理 (p.218 ⑤5 2)の利用を考える。 (1)n≦x<n+1(n は整数) のとき [x]=n すなわち [x]≦x<[x]+1 この式を利用して f(x) ≦ [3x]≦g(x) よって [3x]3x < [3x]+1 x (ただしlimf(x)=limg(x)) となるf(x), g(x) を作り出す。なお、記号[ ]は ガウ ス記号という。 (2)底が最大の項 5 でくくり出す (^{(2x)+112=5{(1/2)+1/+ (12/3)の極限と{(12/3)+1} の極限を同時に考えていくのは複雑である。 そこで、はさ 4 1 B みうちの原理を利用する。 x→∞であるから,x>1 すなわち 0 <1と考えてよい。 CHART 求めにくい極限 不等式利用ではさみうち 解答 (1)不等式 [3x]≧3x< [3x]+1が成り立つ。x>0のとき,各辺 [3x] [3x] 1 x .. をxで割ると ≤3< + x ここで, x から 3- [3x] 3-1[3x] XC ≤3 x x [3x] =3 81X x 3< x はさみうちの原理 f(x)≦h(x)≦g(x) で limf(x)=limg(x)=a ならば limh(x)=a [3x] 13x1+1/2カ lim (3-1)=3であるから lim X11 1 1 mil-nfe (2) (3*+5)=(5* {(3)*+1}] *=5{(3)*+1}* x→∞であるから,x>1,0<<1と考えてよい。 このとき XC 底が最大の項5でくくり 出す。 mil {(1/2)+1}{(1/2)+1}^{(1/2)+1…(*) 4>1のとき,a<bならば (g)+1={(号)+1}^{(1/2)+1} すなわち1<{(1/2)+1}* <(2/2)+ 1< {( 3 ) * +1} * < ( 3 ) * +1 °°である。 2.200 (213) +1>1であるから, 1 lim (13)+1}=1であるから /31 (*)が成り立つ。 lim +1}^=1 81X フェ よって 135 lim (3*+5*) * = lim 5{( 3 )*+1} *=5.1=5 x→∞

未解決 回答数: 1
数学 高校生

なんで黄色のところは↗︎になるんですか?

基本 関数y= 指針 例 338 基本例 次の関数の極値を求め、そのグラフの概形をかけ。 (1) y=3x-16x +18x2+5 211 4次関数の極値グラフ (2) y=x^-8x3+18x2-11 3次関数の極値やグラフと同じ方針で 00000 基本209 210 218 解答 指針 4次関数であっても, p.335~337 で学習した3 める。 つまり、次の手順による。 ①y を求め,まず, y = 0 となるxの値を求める。 ②yの符号の変化を調べる (増減表を作る)。 ③ 作成した増減表をもとにしてグラフをかく。 CHART 関数の極値・グラフ y'の符号の変化を調べて増減表を作る (1)y=12x-48x2+36x =12x(x2-4x+3) =12x(x-1)(x-3) y = 0 とすると x=0, 1,3 yの増減表は次のようになる。 5 10 1 3 X | z=y=12x(x-1)(x-3) のグラフ ZA +0 ... x 0 1 3 ... y' 0 + 0 0 + 極小 |極大 y 5 |極小| -22 -22 よって 10 x=0で極小値5,x=1で極大値10, x=3で極小値-22 をとる。また,グラフは右上の図のようになる。 (2) y'=4x3-24x2+36x=4x(x2-6x+9) =4x(x-3)2 y=0 とすると x=0,3 yの増減表は次のようになる。 Ay ((S)XS16 2か所で極小となる。 解答 |z=y'=4x(x-3)'のグ ラフ ZA 検討 x *** 0 3 A y' 0 + 20 + 1 3 極小 + 0 3 I XD y |-11 167 C-11 よって x=0で極小値11 をとる。また, グラフは右上の図のようになる。 極小値のみをとる。 注意 (2)で,x=3のとき極値はとらない。 なお, p.336 の例題 210 (2) 同様, グラフ上のx座標が3である点における接線x=3のとき=0 の傾きは0である。 練習 次の関数の極値を求め、そのグラフの概形をかけ。 ②211 (1) y=x8x2+7 (2)

解決済み 回答数: 1
数学 高校生

(2)で解説に△BECはBE=CEと△AEFはAE=EFと書いてあるのですがそれはどこからの情報ですか?? それとこの問題自分には複雑に見えるので、見通しの立て方も教えて欲しいです!!

きな で よ マリ =い M 0 ~ 基 -2/3+1 2 W 4 ~24CPS4.4 61 平面(Ⅱ) 105 a+ △ABCにおいて, ∠C=90°, AB=10a, BC=6α とする. 辺BCの Cの側への延長上に, CA = CD とな る点Dをとる。 辺 ABの中点をEとし, 点Bから,直線ADに下ろした垂線を BF とするとき、次の問いに答えよ. 10a /E / B6a-C C, F は AB を直径とする円周上にあることを示し,さらに、 EF=EC であることを示せ. ∠ABC=0 とおいて,∠CEF=90°であることを示せ X CEF の面積をαで表せ. 2>>0 (1)2点C,Fが同一円周上にあることを示すときは, 精講 (2) BEC は BE=CE をみたす二等辺三 角形だから,∠ECB=0 A 90°-0 F 45° ∠BEC=180°(∠ABC + ∠ECB) E 次に,∠EAF = ∠BAC+ ∠CAD =180°-20 -0-03- B C D =90°-0+45°=135° 0 0 △AEF は AE=EF をみたす二等辺三 角形だから, ∠AFE = ∠EAF よって,∠AEF=180°-2(135°-0) =20-90° ∠CEF=180°-(∠BEC+ ∠AEF) =180°(180°-20+20-90°)=90° (3)(2)より,△CEF は, 直角二等辺三角形. △CEF= F-15a 5a=25a² 2 FRA ①円周角の定理の逆 (56円周角注) ② 向かい合わせの角の和が180° (2)(1)から想像できることは, 等しい角度があちこちに存在するらしいこと (3)(2)より, CEFは直角三角形であることがわかっているので,あとは ECとEF の長さですが, (1) によると・・・・・・. ポイント 図形問題では, 与えられた図に長さや角度の情報をす べて書き込むとその設問を解くための情報がボケる. 設問に合わせて必要な部分をぬき出した図を使う + 第4章 「シータ」と呼びます. 角度を表すときによく使われます. 注2)で用いられている文字は,α,β などと同じギリシャ文字の1つで、 注 この基礎問では,(1), (2) それぞれの設問に合わせてぬき出した図をかい ています。 演習問題 61 解答 (1)∠ACB=∠AFB=90° だから、 4点 A, F, C, B は ABを直径とする円周上 にあり、その円の中心はE. よって, EF, EC はこの円の半径 ∴EF=EC + 2 F A E 平面上の三角形ABC で, 3辺の長さが AB=10,BC=6, CA=8 であるものについて、 外心をO, 内心をIとし, OからIへ のばした半直線と外接円との交点を M, Iから0へのばした半直線 と外接円との交点をNとする. このとき, 次の問いに答えよ. (1) 三角形 ABC の外接円の半径R と内接円の半径r を求めよ. (2) 線分 OI の長さを求めよ。内で1 (3) 線分 IM, IN の長さを求めよ.

未解決 回答数: 1
1/1000