学年

質問の種類

数学 高校生

黄色でマーカーを引いた所の意味が分からないので教えてください🙇🏻‍♀️⋱

基本 89 例題 52 関数の極限 (4) ・・・ はさみうちの原理 00000 [3x] x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 (1) lim (2) lim (3*+5*) 1 x18 0.82 項目 基本 21 指針 極限が直接求めにくい場合は、 はさみうちの原理 (p.82 ①の2) の利用を考える。 (1) n≦x<n+1 ( は整数) のとき [x] = n すなわち [x]≦x<[x]+1 よって [3x]≦3x<[3x]+1 この式を利用してf(x) [3x]≦g(x) x (ただしlimf(x) = limg(x)) となるf(x), g(x) を作り出す。 なお、記号 [ ]はガ ウス記号である。 x→∞ (2)底が最大の項5" でくくり出すと(+5 (1/2)^1^(1/2)+1}* 1 = = (1/3) の極限と {(12/3) +1} の極限を同時に考えていくのは複雑である。そこで. はさみうちの原理を利用する。x→∞ であるから, x1 すなわち 01/12 <1と考 えてよい。 CHART 求めにくい極限 不等式利用ではさみうち (1) 不等式 [3x]≦3x<[3x]+1が成り立つ。 x 解答 x>0 のとき,各辺をxで割ると [3x] [3x] 1 ≤3< + x x x [3x] 1 1 ここで,3< + から [3x] 3- x x x x よって 3-1[3x] ≤3 x x lim (3-1) =3であるから [3x] lim =3 x→∞ x はさみうちの原理 f(x)Sh(x)g(x) T limf(x) = limg(x)=α X-1 ならば limh(x)=α 888 2章 関数の極限 x-x (2) (3*+5*)*=[5*{( 3 )*+1}}*=5{(3)*+1}* x→∞であるから,x>10<<1と考えてよい。 x 底が最大の項5でく くり出す。 このとき{(1)+1}°<{(号)+1F <{(12) +1(*) 4>1のとき,a<b すなわち 1<{(1)+1}*<(1) +1 ならば A°<A lim x→∞ {(1/2)+1} =1であるから 1であるから (2) +1-1 lim +1>1であるか ら, (*) が成り立つ。 x→∞ よって lim("+5) -lim5{(2x)+1} =5・1=5 x→∞ 練習 次の極限値を求めよ。 ただし,[]はガウス記号を表す。 052 x+[2x] (1) lim x→∞ x+1 (/)+(2)72 (2) lim{(3)*+(3)*}* p.95 EX 37、

回答募集中 回答数: 0
数学 高校生

(2)でf(x)の定義からf(x)=f(-x)となっているのが分からないので教えて頂きたいです。よろしくお願い致します。

12.0k 33 総合 1 <x<1 で定義された次の関数について、 以下の問いに答えよ。 f(x)= Cn n+ in = 1, 2,・・・・ 数学Ⅲ423 lc (x=0) (1) f(x)がx=0で連続のとき, 数列{cm} はどんな条件を満足するか。 (2) f'(0) が存在するとき, f' (0) の値を求めよ。 (3) f'(0) が存在すれば, 数列{n(Cn-c)}は収束することを示せ。 (1) f(x) は x=0で連続であるから n+1 lim| x→0 limf(x)=f(0)=c x→0 ① -≦|x|<1の各辺の逆数をとって(笑) 1200n 1 n< Txn+1 1 ② すなわち --1=∞ であるから, x→0のとき limf(x)=limcn lim cn=c [ 東京工大) 本冊 例題 91,127 ←x=af(x) が連続 ⇔limf(x)=f(a) xa -1≦x< 不等号の向きに注意。 Tx --(001)-(0) n→∞ Oale (200) (18) 2008 x ゆえに x→0 よって, ① から 818 (2) f(x)の定義から f(x)=f(x) ゆえに f'(0)=lim f(x)-f(0) =lim f(x)-f() } x0 x x→0 -x =-f'(0) ←|-x|=|x| ←微分係数の定義式 総合 f(x)-f(0) の分母分 X 子に-1を掛けてf(x) よって 2f'(0) =0 すなわち f'(0) = 0 (3) f'(0) が存在するとき, (2) から f'(0)=lim f(x)-f(0)=0 ...... ③ x→0 x f(-x) におき換える。 ここで, (1) ②の不等式から ann|f(x)-f(0)|≤. f(x)-f(0) |x| ゆえに n\c-c|f(x)=f(0)| n\cn−c|≤ |f(x)—ƒ(0)| xS)x=(x);\((x)=(x)x-(x)T (n+1)f(x)-f(0)| ·≤(n+1)| cn-c\.. |x| +28-1x8 xSI) (I- GUNT CL -5 ←不等式の等号は f(x)=f(0) のときに成 (4 り立つ。 \f(x)-f(0)|≦(n+1)|cn-c|から |x| |f(x)=f(0)|≤n\C-c\ n n+1 これと④の左の不等式から |f(x)—f(0) 1/(x)-(0)|snlc-cls|1(x)-100)| ここで, n→∞ とすると, x→0であるから, ③より ←両辺に n を掛ける。 [n+1 ← n+1 -≦|x|<1 n | f(x)=ƒ(0) lim -f(0)|=|S(0)1=0 x10 limn|cn-c|=0 よって n→∞ したがって、数列{n(cm-c)}は0に収束する。 ←はさみうちの原理。

解決済み 回答数: 1