学年

教科

質問の種類

経営経済学 大学生・専門学校生・社会人

解説して欲しいです。

当社の備品に関する次の [資料] にもとづいて、以下の各問に答えなさい。なお、会計期間は1年(決算日:3月31日) であり、期中に取得した有形固定資産に関しては年間の減価償却費を月割りにて計算する。 [資料] 1. 備品に関する事項 X5年4月1日 備品甲 (取得原価: ¥160,000)および備品乙(取得原価: ¥180,000)を取得し、 代金は小切手を振出 して支払った。 X5年10月1日 備品丙 (取得原価: ¥120,000) を取得し、 代金は小切手を振出して支払った。 X6年4月1日 備品甲を¥140,000にて売却し、 代金は現金で受け取った。 X7年4月1日 備品乙の除却を行った。 なお、 備品乙の見積処分価額は¥30,000である。 2. 減価償却に関する事項 (記帳方法: 間接法、残存価額:ゼロ) 減価償却方法 耐用年数 備品甲 定額法 備品乙 定額法 備品丙 定額法 5年 8年 4年 問1 X6年3月31日) の減価償却費の総額を解答しなさい。 ×5年度(X5年4月1日~ 問2X6年度(X6年4月1日~ X7年3月31日) の4月1日における備品甲の売却益の金額を解答しなさい。 問3×6年度の減価償却費の総額を解答しなさい。 問4X6年度の備品勘定および備品減価償却累計額勘定を完成させなさい。 なお、 総勘定元帳は、 英米式決算法により締 切ることとし、摘要欄の勘定科目等は次の中から最も適当と思われるものを選び、( )の中に記号で解答するこ と。 また、 本間においては同じ語句を複数回使用してもよい。 [語群 ] ア. 前 期繰 越 イ. 備 オ. 諸 力次 品 繰 越 ウ.減価償却費 キ. 固定資産売却益 エ. 備品減価償却累計額 ク 固定資産除却損 問5×7年度(X7 年4月1日~ X8年3月31日) 4月1日における備品乙の除却損の金額を解答しなさい。 問6 上記問5につき、 備品乙の減価償却を定額法に代えて200%定率法で計算した場合の除却損の金額を解答しなさい。 [200%定率法における償却率表] 耐用年数 8年 償却率 各自算定 改定償却率 0.334 保証率 0.07909 は7月 7 有形固定資産の貸借対照表価額に関する次の文章について、 空欄に適切な用語を記入しなさい。 備品等の有形固定資産の取得原価には、原則として当該資産の引取費用等の ( 減価償却累計額を控除した価額をもって貸借対照表価額とする。 )を含め、その取得原価から

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

(2)なぜ解答のような解き方ができるのか分からないので教えて欲しいです 僕は (a,b)=(30,10),,,①の時のZ((a,b)における1次近似式をZと置いてます)と(a,b)=(30.05,10.02),,,②の時のZを求めて, ②-①という戦法で解こうとしましたが... 続きを読む

2. 基礎解析学 (1)] (1) f(x,y) = f(a,b)+2ab(x-a)+3a2b2(y-b)+(-a)2 + (y-b)2C (x,y), ただし C'(x,y) は (a, b) のまわりで定義され, (a,b) で連続でC(a,b) = 0 となる函数 . (2) 約 8400 増加. [f(a,b)+2ab'(x-a)+3a2b2 (y-b) において (a,b)=(30,10), x-a=0.05, y-b=0.02 とすると 2・30・103・0.05 + 3・302.102.0.02 = 3000 + 5400 = 8400 これがf の 変化量の近似値となる.なお, 実際の変化量は8431.3... 程度 . ] (3) 約 2000 減少 [f(a,b)+2ab(x-a)+3a2b2(y-b) において (a,b)=(20,10), x-a=0.01, y-b= -0.02 とすると, 2・20・103・0.01 + 3.202.102(-0.02) =400-2400=-2000. 実際の 変化量は1997.5... 程度. ] [注.「全微分」というものをdz = fr(a,b)dx+fy(a,b) dy あるいはこれと同等な形で定義して いる教科書も多い. これの詳しい意味は教科書である難波誠 『微分積分学』 (裳華房) p.146 を参 1 照してほしい.この定義を用いると次のような解答が可能: (2) dz=2abdx+3a2b2dy におい て (a,b) = (30, 10), dx = 0.05, dy = 0.02 とすると, dz = 2.30.10°.0.05 + 3・302・102.0.02 = 3000 + 5400 = 8400. これがの変化量の近似値となる. (3) dz = 2abdx+3a2b2dy において (a,b) = (20,10), dx = 0.01, dy = -0.02 とすると, dz = 2.20・103・0.01 + 3.202.102(-0.02) = 400 - 2400 = -2000. ]

回答募集中 回答数: 0
1/108