学年

教科

質問の種類

物理 大学生・専門学校生・社会人

A,B,Cのおもりの運動方程式と張力のつり合い式から加速度a,bと張力T1,T2を求めるのですが、色々試して見たのですが、どうやって求めるのか分からないです。

70 Chapter.7 慣性 図のような質量 71, 742 のおもりがかかった に質量 7 0 りをつげ定滑車に通した. り動き始めたとき, それぞれのおもりの ee NO は、 090 の質量を無捉し. する. 05 71 動滑車にかかった質量 7X1、7722 のおもりは, 動滑車が加 0 紹 ので, 反対方向に慣性力が加わることを忘れない. 72 ページ, TeaTin。 。 (加速度系) の問題の解き方, を押さえる. 解 答 質量 7 のおもりを A, 7 , 7m2 のおもりをぞれぞれ B, 〇 とする. A に働く張力を 婦 , B. O に働く 張力を 75 とする. A が加速度。 で 下降すると, 動消車と B,O の系は 加速度 。 で上昇する. 系内で B が 加速度ぉ で下降すると, COはぁで上 呈する. 系が加速度 。 で上昇するの で. B, C には下方に慣性力 yo. ?2g が働く (図の*印の 2 カカ) 運 動方程式は. は 7o = 79一力 (?.5) B 755王 7 十 ao一 75 |本 人連座系 慣性カ (7.6) NN を考える。 系が加加度。で上昇 (720 25 ー 清ー a EZ 思えばよい. W 1 系全体を加里 0 。 で上上する守 7の の関係は動消事の質量を福 ベータだと思い 上葉禄するので Al 6 に 央 Zs72」 OSIUNMII の B. CE 個性カが位くこ侍 (7?.5) ~ (7.8) ょ り. (8 間時

未解決 回答数: 0
物理 大学生・専門学校生・社会人

物理のエッセンス 力学 13ページ 6番の問題です。 問題文「高さHのビルの屋上から初速v0で水平方向に投げ出すと、地面に落下するまでに飛ぶ水平距離xはいくらか。」 まず鉛直方向で等加速度運動の式を立てたのですが、自分が立てた式は、-H=1/2gt^2です。しかし回答ではH... 続きを読む

1 台反と人較度 。 3 さとッを7の関数として表した後。 6を消ますると、*との関係ピー 條所の式が入られる*。こ ・ この場合は ことがちか さ 隊 NOWなIt.S00oたSH が連動するときに| 間 本光りっ するとまきには LE3 ※ ニーmcosの ッ=mwsinの/ーすge にjoe より (anの B 床から初加 で角度6の方向に投げた場合 (0) 最上に促するまでの時間 と最の座きを玉めよ (9) 耕條誰をボボめよ 還(0p -(esinの" =wsinのgt より (-の』 ょり MI記s 下の式の有辺を 24 とする人が多い。gニーg (人 投げ出されでから北下するまでの時間を ぉとすると =0=(wsinの4ー#9なよって name ( 2 エー (aosの=全- singcos6= (wcosの6=全sinのcosの: 念まっと一信 ヵ。 一定でのを変えていくと,ェが最大と のとき最後の朗形が役に立つ。sin20が最大値1になるのは 90' , つまり と分かる。 導 誠 戸のビルの屋上から初m で平和に投げ出すと。 地面に散る までに飛ぶ水平下離x はいくらか。 っ: +H % V/ で 砂補から 30'上向きに補で投げ出した場合はどうか。 2 V 8 傾角30' の刈画がある< 最下点から釘面に対して角 30' の方向に初連 s で投げ出したゃ 作面との笑容点まで ツゲ ル の還際と衡突するまでの時間 を水めよ * 叙角9の潮らかな香面 上で物体を運動きせる 物体を y 須加 未から衝面にそって肖った角ほcのに と生語表9 達するまでの時間 を求めよ (wmとoは抽面 9

解決済み 回答数: 2
物理 大学生・専門学校生・社会人

全く分からないので、教えて貰えるだけ教えてもらいたいです🙇‍♀️🙏 よろしくお願いします

問題1 較1において点Aに1C, 点Bに2 での電荷を置き原点O にはgoC の電荷を ンス 8 52.3 きい 由 b we 原点の電荷に作用する力の大きさを計算せよ | > 還 【叶に 寺| 4 @ 更に直線AB上の点Pに電荷4を置いた時,原 c ls 。 とる 点Oに置いた電荷に働く力がゼロになった. てCRE 革の の位置と電共すの征を求めよ, ただし。 \ド 電荷の値は小数点以下 2桁の数で表すこと- 5 2 ナェーー を を に44 -ェ*9 (登り を ea 2え 3 | と ES 3 守 1 較是2 原子のモデルとして。 Zi のを持っ上の所子板とその原子校を破点とす る半竹 Rm の球の内部 R/2 <7 そ の領域に 2ciC] の電荷で電子が一様に分布 2 しているものを考える. (図2の断面図を参照.) テイ 2 SS し K (6) 便/2 <rくなの電間度を計算せよぶヶe , (2) 電電に関するガウ メの法則を用いて以下のぞ れぞれの叙域における電場の強さ 万. を計算 ⑩ 0<r<く2 ⑱) 2<7<朋 一 () <r (3) 位置ニー R/3, エー R/2 テー 2R/3 における 。計 電場の強さを計算せよ、ただし, 束数以外の 子-テ 値は小数点以下2桁の数で表すこと。 悦題3 給の内外にあるイオンが, 厚さ 5nm の平らな細胞卓で分離されている. ここ 8S x 10-『CY/(Nmy)] として 舞和は有効数2拘で示せ. () 板計脱の比計電素を8 として, 組有膜 1cm* あたりの電所容量を計算せよ。 (2) 細胞模の聞の電位差が 10mV であるとき, 1cm3の細胞膜に半え られる電気エネ ルギーを計算せよ 37 |

回答募集中 回答数: 0
物理 大学生・専門学校生・社会人

解き分わからない

【1 】As shown in Figure 1, here ame an object Aof mass AZ B ofmass 7 and Cof mass r On a smooth and horizontal surfce. A and B mre inlerconnected by a spring. The Spring has the naumi lcngth of / and a spring constant た A。 B, and C are on one straight Hime and can move along the stmight line. Tuke the right direction as positive fbr velocity Neglect the mass of the spring and air resistanee 国1に示すように, 水平でなめらかな台の上に質量 /の2つの物体 A, Bと質 基wの物体Cが静止している、A と Bはばね定数たで自然散7 のばねで結ばれ てでいるAB,Cは一直線上にあり, この直線上のを動くものとする. 速度の 向きは図の右向きを正にとるものとする. ばねの質基と空気抵抗は無視できる. (①) A and B are oscillated symmetically so ss for center of mass of A and B imtereonnccted by a spdng to be fixed. Find 7, the Gimc pcriod of the oscillgtion. ばねで千ばれた A と B の重心動かないように, A とB の重心に関して左右対 -称に振動させた場合の周期了を求めよ. Next A and B are atrest. The length of the spring is the natural length / で moving speed yo collides perfect-elastically with A. It is assumed that A and C are rigid, the coHlision occurs very shortly and the displacement during the colision is neglected Moreover iis also assumed tbat after the collision。 A snd C do not have nother の 次に, A と B をばねの長さが自然長 7 になる位置で静止させて, C を左から y の速度で A に衝突させる. この衝突は完全弾性衝突であり, かつ物体が非常に かたくて衝突は極めて短時間に行われ, 衝突中の変位の大きさは無視できるも のとする. さらに, Aと Cは一度笑突した後再びぶつからないものとする- の Find tie velociies yand ycofAand Cimmediaedy Ner he colison。 respectiweiy 衝突直後の A と C の速度w vcを求めよ. ⑬) Find the velocity yoof the cemlerofmassofAand B using が6 and ye 衝後の A と B の重心の束度woを44を用いて表せ (④ Find mc minimum lengtb ofthe pcng sferthe colision ing ヶ。 4 we かた 衝突後, Aと B が最も近接したときのばねの長さを ヵ, 7 w。 4を用いて表せ。 も Hi

回答募集中 回答数: 0
3/3