学年

教科

質問の種類

数学 大学生・専門学校生・社会人

青チャートの式と曲線についてです。 赤枠で囲った部分は、図を書けば一目瞭然ですが、式から求めるにはどうすれば良いのでしょうか? よろしくお願いします🙇

[重要] 例題 接線の交点の軌跡 楕円x2+4y2=4について,楕円の外部の点P(a,b)から,この楕円に引いた2 本の接線が直交するような点Pの軌跡を求めよ。 [類 お茶の水大] 指針点Pを通る直線y=m(x-a)+6が,楕円x2+4y²=4に接するための条件は, x2+4{m(x-a)+b=4の判別式Dについて, D=0が成り立つことである。 また、D=0の解が接線の傾きを与えるから,直交傾きの積が-1 と 解と係数の関 係を利用する。 なお,接線がx軸に垂直な場合は別に調べる。 [参考] 次ページでは, 楕円の補助円を利用する解法も紹介している。 CHART 直交する接線 D = 0, (傾きの積)=-1の活用 解答 [1] a≠±2のとき, 点Pを通る接線の方程式は y=m(x-a)+b とおける これを楕円の方程式に代入して整理すると (4m²+1)x2+8m(b-ma)x+4(b-ma)2-4=0 (*) このxの2次方程式の判別式をDとすると D=0 ここで 12/2=16m²(b-ma)-(4m²+1){4(b-ma)-4} TRETJI =-4(b-ma)^2+4(4m²+1) =4{(4-α²)m²+2abm-62+1} ゆえに (4-a²)m²+2abm-b²+1=0 .... IE の2次方程式 ①の2つの解を α, β とすると αβ=1 - 62+1 すなわち 4-a² よって a²+b=5, a+±z [2] α=±2のとき, 直交する2本の接線はx=±2,y=±1| 863 NO (複号任意) の組で, その交点の座標は =-1 842 88-11+x20=1+ (2, 1), (2, -1), (-2, 1), (-2, -1) にある 円x2+y2=5 -√5 基本63 √√5 6754 11 -2 0 |-1 -√5 x 2 +4y²=4 判別式 P(a, b) √5 2, x (*) (b-ma) のまま扱うと, 計算がしやすい。 直交傾きの積が1 < 解と係数の関係 2次方程式 px2+gx+r=0 について =-1が成り立つとき, q^-4pr=q²+4p2> 0 となり、 異なる2つの実数 解をもつ。 [1], [2] から 求める軌跡は 68+(-3) [参考] m の2次方程式 ① が異なる2つの実数解をもつことは, 楕円の外部の点から2本の接線が 引けることから明らかであるが (解答の図参照), これは次のようにして示される。 D' mの2次方程式 ① の判別式をDとすると 2/2=(ab)²-(4-q²)(−62+1)=a²+46²-4 点Pは楕円の外部にあるから 4 +46²4(>が成り立つ理由はか.125 参照。) ゆえに D'>0 なお、一般に楕円の直交する接線の交点の軌跡は円になる。この円を準円という。 に接する2本の直線 2章 8 2次曲線の接線

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

数Iの一次不等式の問題です 果物の個数が(4x+26)個になるのはわかるけど、 9(x -1)と9xのところが何故そうなるのかがわかりません

問題33 1次不等式の文章題への応用 何人かの子どもに果物を配る。 1人に4個ずつ配ると26個余るが, 1人に 9個ずつ配っていくと最後の子どもは果物はもらえるが他の子どもより少 なくなる。 子どもの人数と果物の個数を求めよ。 思考プロセス 未知のものを文字でおく 子どもの人数、果物の個数のどちらかをxとおく。 子どもの人数をxとおく 果物の個数をxとおく → 子どもの人数は x-26 4 子どもの人数をxとおいた方が, 簡潔に表すことができる。 Action » 文章題は、 未知のものをxとおいてその変域に注意せよ 解 子どもの人数をx人とおくと, 果物の個数は ( 4x+26) 個 である。 xは自然数である。 これより すなわち ①を解くと ②を解くと 9(x-1)<4x + 26 <9x_ J9(x-1)<4x+26 14x+26 <9x x < 7 x> 26 5 26 5 < x <7 3 果物の個数は 4x+26 4 ③ ④ より この不等式を満たす自然数xを求めると このとき, 果物の個数は 4x+26 = 4.6 +26 = 50 子ども6人, 果物 50個 したがって Point... 文章題の不等式による解法の手順 ① 未知のものをxとおく。 (2) xの式で表せるものを考える。 大小関係を不等式で表す。 (4) (連立) 不等式を解く。 (5) ④ の範囲の中から適するxの値を求める と1人に9個ずつ配ると最 後の子どもも果物をもら えるから x=6 9(x-1)<4x +26 最後の子どもは他の子ど もより少ないから 4x+26<9x よって 9x-8 ≦4x+ 26 ≦9x-1 としてもよい。 26 0 = 5.2 であるから, 5 5.2 < x < 7 を満たす自然 数xは6 子どもの人数をx人とおく 果物の個数は (4x+26) 個 9(x-1)<4x+ 26 < 9x E

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

二次関数の問題です。 解答のなみなみ線部分がわかりません。なぜ頂点のx座標がこの範囲にあるとするのでしょうか。他の場合分けが不要な理由がわからないです。お願いします

m 各) 8 2次関数の最大・最小/定義域が動く場合 a を実数とする. 定義域が α ≦x≦a +4 である関数f(x)=-x-4-6の最大値は α の関数で あるので,これをM (α) と表す. 同じく, 最小値をm (a) と表す. M (α), m (α) を求め b=M(a), b=m(α) のグラフを ab平面に (別々に)書け. (名古屋学院大) 最大・最小となる候補を利用 前問は,定義域が一定区間に決まっていて、 関数の方が変化したが, 本間は、関数の方が決まっていて、定義域の方が動く問題である。とは言っても,前問と同様に解くこ とができる.ここでは,前間と違うアプローチを紹介しよう。(なお,これらの解法は, 関数と定義域が ともに変化するときも通用する。) 左ページの①~⑦のグラフから分かるように,y=d(xp)+gのグラフが下に凸の場合, ・区間α ≦x≦B における最小値は, x=pが区間内にあれば, 頂点のy座標 q そうでなければ,区間の端点での値f(α), f (B) のうちの小さい方 ・区間α ≦x≦B における最大値は,区間の端点での値f(α), f (B) のうちの大きい方 である。結局,「最大値や最小値になる可能性のある点は,頂点と両端点の3つのみ」であるから, 「頂点のy座標(頂点が区間内にあるとき), および区間の端点のy座標からなる3つのグラフを描い ておき,最も高いところをたどったものが最大値のグラフ, 最も低いところをたどったものが最小 値のグラフである」 これは, グラフが下に凸な場合のみならず, 上に凸な場合についても成り立つ. 解答 y=f(x)のグラフは上に凸である.f(z)=-(x+2)²−2(a≦x≦a+4) であるから、頂点の座標がa≦x≦at4 にあるとき (as−2≦a+4), 6≦a≦2のとき, M(α)=f(-2)=-2 すなわち, それ以外のとき, M(α)=max{f(a), f(a+4)} つぎに f(x) の最小値は定義域の端点で取るから, m (a)=min{f(a), f(a+4)} ここで, f(a)=-(a+2) 2-2 f(a+4)=-{(a+4)+2}2-2=-(α+6) ²-2 であるから, b= f(a), b=f(a+4) のグラフは図1のようになる. よって, b=M(α), b=m(α) のグラフは, 図 2, 図3の太線である. bto 図3 bto 図 2-6 -2 1 -6 -4 -20. a M. -6 b=f(a+4) b=f(a) b=-2 b=-(a+2)²—2 b=-(a+6)-2 a -2 -6 -4 b=-(a+2)²X -2 max {p,q}は,pg のうちの大 きい方 (小さくない方) の値を表 (1 < す (min{p,g}は,p,gのうち の小さい方 (大きくない方) の値 を表す) MAR -6 ←一般にb=f (a+4) のグラフは, b=f(α)のグラフをα軸方向に -4だけ平行移動したものである. (p.32, 51) MX-2-5 b=-(a+6)²-2 08 演習題(解答は p.57 ) (ア) f(x)=x2+2x+2a≦x≦a+1における最大値をM, 最小値をm とする。 | のとき最小値 M-m=1を満たすaの値は であり, M-mはa= をとる。 2次関数のグラフ ち書き、その交点! (星城大 一部省略) (イ)/ 関数f(x)=x2-2xla≦x≦a+1 (a≧0) における最大値g(α)を求めよ. またg(α) を最小にする α を求めよ. (明星大) (ア) 7,08 のどちら の解法で解いてもよい ろう. (イ) 最大値の候補を活 用しよう. 4

回答募集中 回答数: 0
1/5