学年

教科

質問の種類

数学 大学生・専門学校生・社会人

青チャの問題についてです。 3番だけ範囲を求めていないまま解答に答えが書いてありますが、写真のように範囲を定めてはいけないのでしょうか?

/eの式で表される点 P(x, y) は,どのような曲線を描くか。 0 (2), (4)変数x, yの変域 にも注意。●20, -1<sin0<1, -1scos0<1, 2*>0 >媒介変数 t または0を消去して、x, yのみの関係式を導く。 72 曲線の媒介変数表示 例題 131 の のの x=cos0 x=3cos0+2 /r=/+1 ソ=sin°0+1 ソ=4sin0+1 x=2+2 lリ=2-21 p.129 基本事項 2 一般角0で表されたものについては, 三角関数の相互関係 sin'0+cos'0=1 などを利用するとうまくいくことが多い。 **ャ* o 2章 10 から FHIに代入して たソーでt20であるから よって 放物線x=y+1のy20の部分 sin' 0=1-cos?0 から 0s4=xを代入して また,-1Scos 0<1であるから 放物線y=2-x°の -1<x<1の部分 メ=3cos0+2, y=4sin0+1から (1-) t=y° x=y+I y20 1-(2) 20-号 ソ=(1-cos°0) +1=2-cos'0 ソ=2-x? 0=π 0=0 -1SxS1 -1 1 x よって (3) 0を消去しなくても, p.129 基本事項で学んだこ とから結果はわかるが,答 案では0を消去する過程も 述べておく。 COs =2, sin0=ソ-1 3 x-2 COs 0=- フくらないのか) 4 (x-2)(y-1) -=1 sir0+cos'0=1 に代入して 楕円 16 9 x=2+2-* から リ=2-2-から (-Dから xーy=4 た, 2>0, 2>0 から x=22+2+2-2t y=22-2+2-24 (2-)=2- 0nie|2.2-=2"=1 2 より 6Smieュ=0ia 20) A(相加平均)2(相乗平均) COP, 50+7 正の式どうしの和について は,この条件にも注意。 2*+2-22/2'-2t =2 , 2=2-すなわちょ=-tからt=0のとき成り立つ。。 2 よって 双曲線 ギーギー1 =1のx22の部分 4 - 4 血線を描くか。e (6) 類 関西大) 環介変数表示

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

この問題のAを最大角として断るのはなぜですか?

o00 いような定 計>D.117 基基本例題 72 と同じように, 計算がらくになる 工夫をする。 この例題では,各辺の垂直二等分線の方程式を利用するから, 各辺の中点の座標に分数が 現れないように, A(2a, 2b), B(-2c, 0), C(2c, 0) と設定する。 座標を利用した証明 (2) 基本 例題 85 ま本 78,82 OOOO0 基本12 ] 座標に0を多く含む 座標の工夫 2 対称に点をとる 3章 13 答 Aを最大角としても一般性を失わな D。このとき, LB<90°, ZC<90° 注意 間違った座標設定 例えば、A(0, b), B(c, 0), C(-c, 0) では,△ABC は 二等辺三角形で、 特別な三角 形しか表さない。 座標を設定するときは, 一般 性を失わない ようにしなけ ればならない。 A(2a,26) である。 N M K 分線をy軸にとり, △ABCの頂点の 座標を次のようにおく。 A(2a, 2b), B(-2c, 0), C(2c, 0) B \C 2c x OL 証明に直線の方程式を使用 するから, 分母=0 となら ないように,この条件を記 している。 ただし a20, b>0, c>0 また,ZB<90°, ZC<90°から, aキc, aキーcである。 更に, 辺BC, CA, ABの中点をそれぞれL, M, N とする L(0, 0), M(a+c, b), N(a-c, b) 辺ABの垂直二等分線の傾きをmとすると, 直線ABの傾き =-1より と表される。 と。 +c 0-26 b m=- b 三 であるから, m. -2c-2a atc は atc atc 4点N(a-c, b) を通り, 傾 よって,辺 ABの垂直二等分線の方程式は atc の直線。 b atc ソーb=-! 6 (x-a+c) 0: a+6-C atc x+ ソ=ー の すなわち b b 辺 ACの垂直二等分線は、 辺ACの垂直二等分線の方程式は, ①でcの代わりに -cと α+8-c b b の直線 ACに a-c 傾き a-c y=ー + 垂直で,点M(a+c, b) 通るから, 0でcの代: りに -cとおくと, そ。 程式が得られる。 おいて b 2直線の, ② の交点をKとすると, 0, ②のy切片はともに a"+6-C? ゲービ) a+8-c であるから K(0. b 点Kは、y軸すなわち辺BCの垂直二等分線上にあるから, AABC の各辺の垂直二等分線は1点で交わる。 直線の方程式、2直線の関係

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

⑵の〜がohベクトルだから というところがなぜそうわかるのかがわからないです。教えていただきたいです🙏

●11 aOA+6OB+c0C=D0- 原点0を中心とする半径1の円周上にある3点A, B, Cが条件7OA+50B+30C=D0 を満た すとき,次の問いに答えよ。 ト(1) ZBOCを求めよ。 (2) 直線 CO と直線 AB の交点をHとするとき, OH を OC を用いて表せ、 (3) AOHB の面積を求めよ。 (島根大·総合理工ー後/一部略) a0A+60B+cOC=0 の使い方 0を中心とする半径1の円周上に A, B, Cがある……☆ という条件が効いてきて△ABC の形状が決 まる(O3では △ABCの形状は決まらない).☆, すなわちOA=OB=OC=1 を使うために 70A+50B=-30C などと変形(どれか一つを右辺に移項)して各辺の大きさの2乗を考える: 170A+50B|P=|-30C|P ○3のaPA+6PB+cPC=0 と同じ形であるが, この例題では, : 49|OAP+70OA·OB +25|OB P=9|0C|P 700A-OB=-65 49+700A-OB+25=9 OA-OB=-13/14 これより OA と OB のなす角の大きさ(cos ZAOB=-13/14; OA=OB=1 に注意)が求められる。 (1)では,ZBOCを求めるので5OB +30C=-70A として各辺の大きさの2乗を計算する。 言解答 70A +50B +30C= D0 (1)のより,50B+30C=-70A : 150B+30CP=|-70AP : 25|OB|P+30OB·OC +9|0C|P=49|OA|P 10A|=|OB|=|OC|=1だから, 0 1 1 A B 1 OB-OC 2 25+30OB·OC+9=49 ニ [O3と同じとらえ方をすると] のの始点をCに書き直して, OB-OC 1 ZBOC=60° 2' よって cosZBOC= 7 lOB||OC| CA+ 15 15 CB CO= (2) Oより, C -CA + 5 -CB 12 12 OC=- 1 (70A+50B) 12 -(70A+50B)=-4· ミー- 3 これのカッコ内が CH 0 )60° m wm が OH だから, OC=-4OH B つまり,CO=CH. この式の A H 120° -oC 4 1 4 始点を0にすると OH=--oc 4 OH が得られる。 (3)(1)より ZBOH=120°, (2)より OH= OC= = となるので, 4 /3 V3 1 -OH·OB·sin120°: 11 24 AOHB= 2 16

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

48の問題で解説でわからないところがあったのですが 1つ目 まず両辺をルートxで割ってるのに何故kは割らなくていいのか? 2つ目 すごい基礎的なことだと思うのですがハテナのところがtの2乗となるのが何故かわからないです。自分は文字だけ見てtとしてしまったのですがルートの中身... 続きを読む

「解法3] =1, =4の特別な値から, kの必要条件となる不等式を求め,そこでの 48 1995年度 [1〕(文理共通) Level B 2 とを用いて与式を変形し、 任意の正の実数tに対して, その式が成 Vx ポイント n立つためのkの値の範囲を求める。 2<k|2+ Vx y という変形の後,上記の方針による。 x 「解法1] 1+ G+shと変形し。 <んと変形し, x+y -=tとおき, 2x+y 「解法2] x+ =1-tも利用し y て変形を続ける(定数の分離)。 挙号の成り立つときのkの値が条件を満たすことを示す。 解法1 明らかに&>0でなければならない。x+0であるから +yS/2x+y y Sk|2+ Vx X t= とおくと,①より 1+SA2+F ) (-1)-2t+ (2k°-1)20 yがすべての正の実数値をとるとき, tもすべての正の実数値をとる。 よって,任意の正の実数tに対して②が成り立つためのk (>0) の最小値を求める とよい。 2の左辺をf()とおく。 ポ-150のときは,十分大きなtの値に対してf(t)<0 と なるので不適である。 X, 4=f() R-1>0のとき,放物線u=f(t) の軸=-1 ->0の位 直に注意すると,2がt>0のすべてのtで成り立つ条件 は f() =0 の判別式ハ0 よって

回答募集中 回答数: 0