学年

教科

質問の種類

数学 高校生

統計的な推測 まず、(AとB)で、 求めたP(A)と求めたP(B)をかけたのと、 P(A)かつP(B)にあてはまるのを一つずつ数え上げたもの、 この方法で出た2式を比べている、という認識をしているのですが(違っていたらご指摘下さい)、 (AとC)は 数え上げの後、何をや... 続きを読む

基本 例 71 独立・従属の判定 00000 1個のさいころを2回続けて投げるとき,出る目の数を順に m,nとする。 <3である事象を A, 積 mn が奇数である事象をB, |m-n|<5である事象を Cとするとき, AとB, AとCはそれぞれ独立か従属かを調べよ。 p.520 基本事項 指針 事象が独立か従属かの判定には,次の関係式のうち確かめやすいものを利用する。 (定義) 事象AとBが独立⇔P(B)=P(B) P(A)=P(A) ⇔P(A∩B)=P(A)P(B) (乗法定理) ここでは, 乗法定理が成り立つかどうかを確認する方法で調べてみよう。 (AC) Cについて, m-n<5を満たす組 (m,n) の総数は多いので、余事象で を考えてみる。 AとCが独立AとCが独立であることに注目して,AとCが独立か従属 かを調べる。 (AとB) A∩Bは、 (AB) P(A)=1/2/28-1/13 (m, n) = (1,1), (1,3), 解答 また,積mn が奇数となるのは,m, nがともに奇数の (1,5) となる事象である 3×3 1 から ときであるから P(B)= 62 4 P(A∩B) P(B)= よって P(A)P(B)=1/12 P(A) 3626 また,m<3かつ積n が奇数となるには, 一方,P(B)=- -- であるか (m, n)=(1,1) (1,3) (15) の3通りがあるから ら P(B)=P(B) よって, AとBは独立。 ゆえに 3 P(ANB)=-11 62 12 P(A∩B)=P(A)P(B) よって, AとBは独立である。 (AC) 余事象は|m-n≧5 となる事象, すなわち (m,n) = (1,6), (61) となる事象である。 Cの根元事象の個数は 2 個。 2 1 よってP(C)= 62 18 また # P(ANC)==136 62 Anではm<3 かつ 1 ゆえに、P(A)P(T)= 1 1 F = 3 18 54 であるから m-n≧5となる事象 で、そのような(m,n) P(ANC) ≠P(A)P(C) よって, ACは従属であるから,AとCは従属であ る。 は (m,n)=(1,6)

未解決 回答数: 1
数学 高校生

[1]の①の波線部はなぜ>=になるのでしょうか?指針では実数解2つ、1つに場合分けして考えていて、[1]はそのうちの実数解2つの場合分けの部分に当たると思うのですが、>=だと実数解は1つとなってしまう場合がありませんか?

重要 例題 127 2次方程式の解と数の大小 (3) 00000 方程式x2+ (2-a)x+4-2a=0が-1 <x<1の範囲に少なくとも1つの実数解 をもつような定数αの値の範囲を求めよ。 指針 [A] -1<x<1の範囲に,2つの解をもつ (重解を含む) [B] -1<x<1の範囲に、ただ1つの解をもつ 基本 125 126 ような場合が考えられる。 [B] の場合は、解答の[2]~[4] のように分けて考える。 例題 125,126 同様,D,軸, f(k) が注目点である。 19 *40 解答 判別式をDとし,f(x)=x2+(2-a)x+4-2a とする。 ( [1] f(-1)=-a+3,f(1)=-3a+7 [1] 2つの解がともに-1<x<1の範囲にあるための条件は D=(2-a)-4・1・(42) 0....... ① 2-a 2 =0 D>O + ② 1 x [2] 4 2-a |軸x=- について lf(-1)=-α+3> 0 ...... ①から ゆえに α6,2≦a ... a2+4a-12≧0 ... ③間(1)=-3a+7> 0 よって (a-2)(a+6)≥0⚫FUCHS ⑤ ②~④を解くと,解は順に -1 +1 1x 7 0<a<4 ・⑥,a<3 ...... ⑦, a<- 3 (8 7 ⑤~⑧の共通範囲は 2≦a< 1) [3] a=3 3 または [4] a= って -a+3=0 ゆえに このとき、方程式はx2-x-2=0 よって [4] 解の1つがx=1のときは f(1)=0 (2 7 -3a+7=0 ゆえに a= 3 このとき、方程式は 3x2-x2=0 (x+1)(x-2)=0 よって、他の解はx=2となり, 条件を満たさない。 [2]解の1つが1<x<1, 他の解がx<-1 または 1 <xにあ るための条件はf(-1)(1) 0 って (a-3)(3a-7)<0 [3] 解の1つがx=-1のときは .-a+3)(-3a+7) < 0 72 7-3 23 ゆえに <a<3 3 たない。 f(-1)=0 (1). 6 [⑤ [ .. .. (x-1)(x+2)=0 2 [1], [2] で求めたαの値の範 この値を -6 0 2734 3 28 a [4] r[1] [2] 7-3 3 a

未解決 回答数: 1
数学 高校生

等号が成り立つのは〜の時であるっていう分はどういう役割(?)があるのでしょうか。

C1-106 (292) 第4章 空間のベク Think 例題 C1.54 空間のベクトルの大きさ調整 =(1,1,1),b=(-1, 1, 2),c= (2,-1, 3) とするとき x+y+c の最小値と,そのときの実数x,yの値を求めよ。 考え方 xa+y+cd . この成分を代入して,x,y の式で表す. x+y+c を計算してxyについて平方完成する。 解答 x+y+c=x(1,1,1)+(1,1,2)+(2,-1,3)|| =(x-y+2,x+y-1, x+2y+3) x+y+2=(xy+2)+(x +y-1)+(x+2y+3)2 =3x²+(4y +8)x+6y2+6y +14 =(x+2y+4) + 3 2 14y2+2y+26 3 D DA 14 1\2 121 =3x+ y+ + + 3 3 14 14 d **** Think 例題 2- ベク [考え方] 解答 195 まずの2次関数 18+8.0 とみて平方完成する について mmm 完成する. 4 (実数) 20 22/4)20. (y+1/14) 20より 18+6+7121 |xa+y+cl 11vI4の理由は? x+y+c=0 より, 14 これは?S 等号が成り立つのは、x=-=-1/4のときである。 x+2y+4 3 -=0 かつ よって、 x=- 9 y=- 1 14 のとき,最小値 11/14 14 y (別解)(213)を通り,a, の作る平面αを考える x+y+cが最小となるのは,xa+b+c が平面 α つまり,a, それぞれと垂直になるとき,すなわち,0 Misa (xa+yb+c)=0 / b⋅ (xa+yb+c)=0 のときである. a=√3, 6=√√6, ab=2, bc=3, ca=4 より x+b+c)=xlal2+ya.b+c ・a=3x+2y+4=0 (x+y+c)=xab+y|6|2+6・c=2x+6y+3=0 9 x= y=-- 1 14 MN ① p=xa+yb+c すると,P(p)は平 面α 上の点である. ZA a H3 -xa+yb+c 2 0 *x 9 x= y= 7' 14 |xa + yb+c|は最小 になる. x+y+c=(x-y+2 x + y-1, x+2y+3) だから のとき, 2-1216 7a14 (1/123号) ①を代入して 9- b + c = 33 14' 7 9- したがって 14 2016-11 -b+c = 14 9 よって, x=- 14 2-2 y=-1/12 のとき,最小値 11/14 14 練習 (1,1,1), 6=(1, 4, 2), c(-3,6,6) とするとき, xa+y+clの C1.54 最小値を与える実数x, y と,そのときの最小値を求めよ. *** TOAP BEYO ICAP-10CP+[ABP (九州大) ➡p.C1-113 14 15

解決済み 回答数: 1
化学 高校生

3)なんでこんな計算ができるのか全く分かりません。解説お願いします

基本例題23 固体の溶解度と濃度 →問題 50 水 100g に対する硝酸カリウム KNO の溶解度は, 25℃で36,60℃で110である。 硝酸カ リウム水溶液について、 次の各問いに答えよ。 (1) 25℃における硝酸カリウムの飽和水溶液の濃度は何%か。 (2) (1)の水溶液のモル濃度を求めよ。 ただし、飽和水溶液の密度を1.15g/cmとする。 (3) 60℃の硝酸カリウム飽和水溶液100gを25℃に冷却すると,結晶が何g析出するか。 考え方 解答 (1) 25℃では,水 100gに36g の KNO が溶けて飽和するので、 質量パーセント濃度は,次のようになる。 (1) 飽和溶液では,溶質が 溶解度まで溶けている。 (2)次式から、質量と密度 を用いて体積を求めること ができる。 36g_ ×100=26.4 26% 100g+36g 136 g (2) (1) 水溶液の体積は =118.2cm²=118.2 体積[cm]=- 質量[g] [g/cm³) 1.15g/cm3 (3) 水100gを含む飽和水 溶液を冷却すれば, 溶解度 の差に相当する質量の結晶 が析出する。 ×10-3L, KNOg(=101g/mol) の物質量は36/101mol なので、 そのモル濃度は, 36/101 mol =3.01mol/L=3.0mol/L 118.2×10-L (3) 水100gを含む60℃の飽和水溶液は100g+110g=210g なので、この水溶液を25℃に冷却すると、 溶解度の差に相当 する質量110g-36g=74gの結晶が析出する。 したがって, 飽和水溶液 100g では, 74g×100/210=35g となる。 138

解決済み 回答数: 1
1/1000