学年

教科

質問の種類

数学 高校生

大至急お願いします! (4)の問題です! 何故この問題は空の組み合わせを考えているのですか?

氏名 数 学 医 2 受験 番号 2 M. A, E. B, A, S, H. I の8 文字を使ってできる文字列について、 次の問いに答えよ。 ただし, AとAの2文字は区別 せず、また、8文字のうち母音は A, E. I である。 (1)8 文字すべてを使ってできる文字列はいくつあるか。 (2)8文字すべてを使ってできる文字列のなかで, A が隣り合うものはいくつあるか。 (3)8文字すべてを使ってできる文字列のなかで、 どの母音も隣り合わないものはいくつあるか。 (4) M, A, E, B. S, H. I の7文字を3組に分ける方法は何通りあるか。 ただし, 3組の区別はしない。 [ 解答欄 医② (1) すべて異なる8文字からなる文字列 は8通り。 しかし、AとAは区別 しないので 8! 2! =20160 (2) 2つのAを1つの文字Aとみなせば すべて異なる7文字を使ってできる文 字列を考えればよいので 7!=5040」 (3) 母音をV, 子音をCとかく。 8文字のうち、母も子音も4文字すら なので次の5つを考えればよい。 CVCVCVCV VCCVCV CV ① ② 4 ⑤ VCVCCV CV VCVCVC V VCVCVCVC 上の①について Vの並べ方は4/1.ここでAとA は区別しないので2で割った。 他方の並べ方は4! なので ①は 4! x4! で 2! ③、④、⑤のどれも全く同じなの 4!x4! 2! ×5=1440 (4) まず文字Mが3つの組の いずれかに属するのは3通り。 次に文字Aも3つの組のいずれかに 属するのでやはり3通り、どの文字 についても実は同様でやはり 3通り。 したがって7文字を3組 に分ける場合の数は 37通り、 ただし、当面は3組の区別を 行っている。この場合の数から 2組が空 さらに1組が空 になる場合の数を引く必要 がある。 2組が空になるのは3通り。 次に、ある特定の1組が空に なる場合の数は,どの文字も 残りの2組に分けられるので 27-2通り。ここで、2組の うちのどちらかが空になる 場合の数は2通りなので これを引いたことに注意。 したがって3組のうちの どれか1組のみが空になる 場合の数は(27-2)×3通り、 上では3組の区別を行っ ていたので、したがって 求める方法は 37-3-(272) 3 3! =301」(通り) 得 点

回答募集中 回答数: 0
数学 高校生

同一直線上にないというところから理解ができません。お願いします。

る. このことから,右のようにに、 長さより大きい△ 三角形の2つの辺の和は、残りの辺の長さより大きい という性質を利用することができないか考える m つまり,BD=PD, CE=PE となる △PDE が存在すること を示すことができれば, DE <BD+CE を示せそうである. 右の図のように、線分AM 上で, BM=CM=PM とな るように点Pをとる. 人式の証明 海形の or △BDM と △PDM において, ・成立条件2組の辺とその間の角が, それぞれ等しいので △BDM=△PDM a LA C a<b+c 9 /P E 点P と PD, PE の補助 線を引く. # BMCIA (0) Focus よって, BD=PD ...... ...① ∠DBM = ∠DPM ...... △CEM と △PEM において同様に考えて, △CEM=△PEM ML よって, CE=PE …③ ∠ECM=∠EPM …④ ②④より A A DE <BD+CE 三角形 成立条件:同一直線上 じゃない ∠DPM + ∠EPM= ∠DBM+ ∠ECM +28) = ∠ABC+ ∠ACB する。 3208AA =180°-∠BAC <180° [ + ] よって, 3点D, P, Eは同一直線上にない. したがって, △PDE は存在し,三角形の成立条 件より, DE <PD+PE ①③ 5より、 DE <BD+CE 3点が同一直線上にある とき, DE=BD+CE と なるので,そうならない ことを示しておく. 28 28 A 08 411 STAJ 不等式の満たす意味と同じ図形の性質がないか考える 内 214 (1) A て,辺BCの中点をMとする. -BA Farel 朱

回答募集中 回答数: 0
1/1000