学年

教科

質問の種類

数学 高校生

この問題なんですが Pを x、Y、0遠いて計算して 出すというのでは答えが違うのはなぜなんですか? 字が汚くてすみません。

-118 Think (686) 第11章 空間のベクトル 例題 C1.60 空間における交点の座標(2) **** 2点A(5, 0, 9), B(1, 4, 3) と xy 平面上を動く点Pに対して, AP+PB の最小値と,そのときの点Pの座標を求めよ. 同じ側 ABS ・平面 考え方 2点A, B が xy 平面に関して反対側 にある場合, AP + PB が最小となる のは, 3点AP Bが一直線上にあ る場合である。 同じ側にある場合は, xy 平面に関してBと対称な点B' をと ればよい 反対側 AS P xy 平面 ・B B' 直線の方程式をベクトル方程式で考えて, 媒介変数表示する。 Abs 2点A, B を通る直線のベクトル方程式は OP=OA+tAB である=10 解答 2点A, B は xy 平面に関して同じ側にある. xy 平面に関して点Bと対称な点をNHAT もに正なので, B'(1, 4, -3) とおくと, PB=PB' より, AP + PBが最小となるのは, 3点A,P, B' が一直線上にあるときである. AB' = (-4,4,-12) より, OP=OA + tAB' =(5,0,9)+t(-4,4,12)x =(5-4t, 4t, 9-12t) A,Bの座標がと xy 平面に関して同じ側 にあるとわかる. 直線 AB'′ と xy 平面 15 P B' y の交点が求める点P である. 9 したがって、点Pの座標は, (5-4t, 4t, 9-12t) ・① 013+8 点Pはxy平面上の点より 座標は0だから, 9-12t=0 t=- 3 このとき,P(230) 2-)-A2AO HO (S) 50-RO-1 よって,P(2,30) のとき,AP+PBは最小となり AP+PB=AB、 =√√(-4)'+4°+(-12) =4/11 (3 tを①に代入する. Focus 直線のベクトル方程式 OP = OA+tAB =OA+t(OB-OA) =(1-t)OA+tOB 10-010

解決済み 回答数: 1
数学 高校生

この別解の3行目までがよく分かりません。 どうしてaベクトルとbベクトルがそれぞれ垂直になる時最小になるのか分かりません。教えてください🙇‍♀️

Think 例題 ルの成分と内積 (663) C1-95 =(1,1,1), 6=(-1, 1, 2), C (2,1,3) とするとき C1.49 空間のベクトルの大きさの調 xa+yb+clの最小値と,そのときの実数x, yの値を求めよ. 考え方 xa 解答 AC +y+さにの成分を代入してすりの式で表す。 xa+yb+clを計算して x, y について平方完成する。 x+yb+c=x(1,1,1)+y(-1, 1, 2)+(2,-1,3) =(x-y+2,x+y-1, x+2y+3) xa+yb+cl2=(x-y+2)+(x+y -1)+(x+2y+3) 2y+42_ **** =3x²+(4y+8)x + 6y2+6y +14) =3(x+2x+4)+ 14y² +2y+26 3 =3x+ 2y+4\2 3 + + 14 14 (x+2x+4) 20. (+14) 2019. xa+ 6+2 121 xa+b+c≥0. 20よりx+y+=121 まず,xの2次関数 とみて平方完成する. この式について平 方完成する. 14 (実数)20 140 +3 xa +6 +11/14 等号が成り立つのは、x=- 9 y=- のときである。 14 2y+4 x+- -=0 かつ よって、 x=. 9 7' y=- 1 14 そのとき,最小値 11/14 14 第11章 (別解) C(2,-1,3)を通り, a, b の作る平面α を考える. |xa+yb+c | が最小となるのは,xa+yb+c が平面α つまり,a, それぞれと垂直になるとき,すなわち, a.(xa+yb+c)=0 b (xa+yb+c)=0 0=0のときである. 01|a|=√√3|6|=√6, a b=2, bc=3, ca=4 a(xa+y+c)=xlal+ya・b+ca=3x+2y+4=0 6.(x+y+c)=xa6+y/62+6・c=2x+6y + 3 = 0 これを解くと, x=- 91 1 = 14 y+ 1 3 140 p=xa+yb+c すると,P(D)は平 面α上の点である. a、 H3 C xa+yb+c 0 2 xx x= 97 1 y=- 14 9- 714 + b + c = 1 したがって、1-20-12462= x+y+c=(x-y+2, x+y-1, x+2y+3)だから のとき, ①を代入して 0 doxton 9- x+y+cは最小 11 33 11 11/14 D 14 よって, = x=- 9 7' 11/14 y= == 練習 1 のとき、 最小値 14 (1.1.1).6(142) = 36.6) とするとき x+y+cの 01.49 最小値を与える実数xyとそのときの最小値を求めよ。 *** (九州大) ➡p.C1-101 12

解決済み 回答数: 1
数学 高校生

この問題の(1)の解説の、√2/√3a²がどうやって√6/3aになったのかがわかりません、、教えてください🙇‍♀️

を 141 基本 例題 138 正四面体の高さと体積 1辺の長さがαである正四面体 ABCD がある。 (この正四面体の高さをαの式で表せ。 (2)この正四面体の体積をαの式で表せ。 CHART & THINKING 空間図形の問題 平面図形 (三角形) を取り出す 0000023 基本137. 重要 139 (1) 頂点Aから底面 BCD に垂線 AH を下ろすと,AH が正四面体の高さとなる。AHを 求めるために、どの三角形を取り出せばよいだろうか? AB=ACAD であることに, まず注目しよう。更に,点HはBCDのどのような位置にあるかを考えよう。 (2) 四面体の体積の公式において, (1) で求めた「高さ」に加えて何を求めればよいかを判断 しよう。 解答 (1) 正四面体の頂点Aから底面 △BCD に垂線AH を下ろすと, AB=AC=AD であるから △ABH=△ACH=△ADH よって BH=CH=DH D B ゆえに、点Hは BCD の外接円の 中心で,外接円の半径はBH である。 よって, BCD において, 正弦定理により 1 a a BH= = 2 sin 60° 3 したがって AH=√AB2-BH= = a². 2 a a A (1) AABH, AACH, △ADH は,斜辺の長さ がαの直角三角形でAH は共通辺である。 直角三角形において, 斜 辺と他の1辺が等しいな らば互いに合同である。 CD sin DBC -=2R CD=α, <DBC=60° △ABHに三平方の定理 を適用。 4章 15 三角形の面積、空間図形への応用 2 √6 = 3 3 a ? B a H (2) BCD の面積は a.a sin 60°- よって、 正四面体 ABCDの体積は √3 = a² 4 4 1/13 = ABCD AH-1√361 /2 a= 3 3 4 12 RACTICE 1383 ABCD の面積 -BD・BCsin∠DBC (四面体の体積 ) =113×(底面積)×(高さ)

解決済み 回答数: 2
数学 高校生

(2)の問題でaの二乗を求めた時に出た答えを約分しちゃダメな理由とaの二乗から二乗を外さないで計算する理由を教えてほしいです!!

P.210 基本 基本 例題 132 多角形の面積 次のような図形の面積Sを求めよ。 (1) AB=6,BC=10, CD = 5, ∠B=∠C=60°の四角形ABCD (2) 1辺の長さが1の正八角形 CHART & THINKING (1) まずは右のように図をかいてみよう。 基本131 からSを、それぞ 多角形の面積はいくつかの三角形に分割するのが基本方針 だが,対角線 AC, BD のどちらで分割するのがよいだろうか? ACで分割→ △ABCに余弦定理を用いると、線分AC の 長さは求められるが,DACの面積はすぐにはわからない。 BD で分割 → △BCD は BC:CD=2:1, ∠BCD=60° に 注目すると, ∠DBCの大きさや線分 BD の長さがわかる。 これを利用して △ABD の面 積を求めてみよう。 6. 5 60° 60° B 10 C 4章 解 (1) (後半) ロンの公式を用 =4+5+6 から って =√s(s-as- (2) 正八角形の外接円の中心を通る対角線で8つの三角形に分割すればよい。 解答 (1) BCD において, BC=10, CD = 5,∠C=60°から ∠BDC=90° ∠DBC=30° BD=BCsin60°=5√3 6 5√3 157 15 22 30° 15/7 △ABD において ∠ABD= ∠ABC-∠DBC=30° 30° 60℃ 4 よって, 求める面積は B 10 60° S=△BCD+ △ABD _n 150° 150=- =1/23・5・5√3+1/23・6・5v3 sin30°=20√3 (2) 正八角形の外接円の中心を0, 1辺をAB とすると AB=1, ∠AOB=360°÷8=45° OA=OB=α とすると, OAB において, 余弦定理により 12=α²+α2-2aacos 45° 整理して 1=(2-√2)a² s150°=- ゆえに a²=- 1 2-√2 2+√2 2 よって, 求める面積は S=8△OAB=8asin45°=2(√2+1) 8.1/23a'si PRACTICE 132Ⓡ 合同な8個の三角形に分 ける。 A 1 B a 45% a αのまま代入する。 )は鈍角三 次のような図形の面積を求めよ。 (1)AD // BC, AB=5,BC=6,DA=2,∠ABC=60°の四角形ABCD (3)1辺の長さが1の正十二角形 (2)AB=2,BC=√3+1,CD=√2,B=60°,C=75° の四角形ABCD 15 三角形の面積、空間図形への応用

未解決 回答数: 1
1/59