学年

教科

質問の種類

数学 高校生

ほんとに初歩的な質問です。高校1年。数学Iです。なぜこの問題で角Cが90度だということがわかるんですか? 私はわからず角Aを90度と置いてしまいました。角Aでも解けるんですか、?

0.63 基本 例題 66 最大・最小の文章題 (1) 117 BC=18, CA=6 である直角三角形ABC の斜辺 AB 上に点Dをとり,Dか ら辺BC, CA にそれぞれ垂線 DE, DF を下ろす。 △ADFとDBEの面積 の合計が最小となるときの線分 DE の長さと,そのときの面積を求めよ。 00000 基本 60 CHART & SOLUTION る。 文章題の解法 最大・最小を求めたい量を式で表しやすいように変数を選ぶ DE = x とすると, 相似な図形の性質からADF, △DBEはxの式で表される。 また、xのとりうる値の範囲を求めておくことも忘れずに。 3章 8 解答 DE=x とし, △ADFとDBEの 面積の合計をSとする。 0<x< 6 ...... ① 0<DE=FC<AC であるから A D F (辺の長さ)>0 B E C ← xのとりうる値の範囲。 AF=6-x △ABC∽△ADF であり, △ABC: △ADF=62: (6-x)2 △ABC=18・6=54 であるから △ADF= AADF=(6-x)2.54-(6-x)² 相似比がmin→ 面積比は2n2 三角形の面積は 1 (底辺)×(高さ) 2 よって ADBE= -.54=x² = 同様に,△ABC∽△DBE であり △ABC: △DBE=62:x2 x² 62 AS したがって, 面積は 549 S=△ADF+ △DBE -3-((6-x)²+x²) 27 2次関数の最大・最小と決定 別解 長方形 DECF の面積 をT とすると, Tが最大に なるときSは最小となる。 DF=3(6-x) から T=x3(6-x) =-3(x-3)2+27 0<x<6 から, x=3でT は最大値 27 をとる。 よって、 線分 DE の長さが 3のとき, Sは最小値 =3(x²-6x+18) =3(x-3)2+27 0 3 6 1・6・18-27=27 2 ①において, Sはx=3で最小値27 をとる。 をとる。 よって、線分 DE の長さが3のとき面積は最小値 27 をとる。 PRACTICE 663

解決済み 回答数: 1
1/129