学年

教科

質問の種類

物理 高校生

名問の森の質問です。 (2)の解説部分の赤線がなぜなのかいまいちよく分かりません。教えてください🙇‍♀️

BxX 31 直流回路 電圧 100Vで使用すると, 80 W を消費する電球 L と, 40W を消費 する電球 M がある。 L, Mにかかる電圧 V〔V〕 と,電球を流れる電流 I〔A〕との関係を示す特性曲線は図1のようである。有効数字2桁で 答えよ。 19/9 名 00(1) Lに電圧 80Vをかけて使用するとき,Lの抵抗値はいくらか。ま た,消費電力はいくらか。 × (2) Lを電圧 100Vで使用しているとき,Lのフィラメントの温度は いくらか。ただし,抵抗の温度係数を2.5×10-3/℃ 室温を0℃と する。また,図1の点線はLの特性曲線の原点における接線を示す ものとする。 だから (3)図2において,Eは内部抵抗の無視できる起電力 120V の電池 Rは100Ωの抵抗である。 L を端子 XY間に連結して使用すると きLの電圧と消費電力はいくらか。ば (4)Lと100[Ω] の抵抗3本を並列にして(図3), 図2のXY間に連 結して使用するとき,Lにかかる電圧はいくらか。 × (5) LとMを並列にして、 図2のXY間に連結して使用するとき, L の消費電力はいくらか。 また, 回路全体での消費電力はいくらか。 Level (1) ★ (2) (3) (4) (5) Point & Hint Poji[C]での抵抗値は0袋)の (2)(4は抵抗の温度係数)が漁費電力 31 105 民として、R=R(1+al)と表され が大きいほど高温になる。つまり、グラ フの右上に向かって温度が高くなっている。 すると室温はどのあたりか。 706 図1を生かしたいのでにかかる圧を流れる電流を」として、キル ヒホッフの法則で関係式をつくる。一種の連立方程式の問題だが, グラフ上で解 くことになる。 (5)LとMを1つの電球とみて特性曲線をつくってみる。 LECTURE (1) 図1より V = 80[V] のとき I=0.7 〔A〕 の電流が流れるから, オーム の法則 V=RI より抵抗値 Rは R= == 80 0.7 ≒1.1×102 [Ω] 消費電力は VI = 80×0.7=56 〔W〕 RI2を用いてもよいが, VI ならダイレクトに計算できる。 10 M+J (2)V=100 〔V〕 のとき, I = 0.8 〔A〕 だから VOST V 100 R= == =125 [Ω] I 0.8 室温0℃はジュール熱の発生が無視できる原点近くの (VIが0に近い) 状態である。 [℃] での抵抗値 R のまま一定を保てば, 特性曲線は点線の 20 0.4 0.2 I[A] 1.2 225 1.0 0.8 0.6 Y 120V 100Ω RATE 図2 L IM 091 0 0 20 40 60 80 100 120 100Ω V(V) 図1 図3 ような直線となるはずだから Ro=1.0=20[Ω] よって, 求める温度を t [℃] とすると 点線のどこを 3. |使ってもよい 125 = 20 × ( 1 + 2.5 × 10-3t) .. t = 2.1×103 [℃] (3)Lの電圧、電流をV, I とすると, キルヒホッフの法則より 120 100I+V ・・・・・・ ① この関係を満たす V. Iは次図の直線(実線) で表される。 Lの特性曲線との交点が求める答 えだから V = 60[V] I = 0.6 (A) 消費電力はVI=60×0.6=36〔W〕 式①をグラフ化するとき 1次式だから直線 100Ω 120V 図 a

解決済み 回答数: 1
物理 高校生

(2)はこのようなやり方でも合ってるんでしょうか??教えてください

例題 解説動画 基本例題29 円錐振り子 図のように、長さLの糸の一端を固定し, 他端に質量m のおもりをつけて, 水平面内で等速円運動をさせた。糸と 鉛直方向とのなす角を0, 重力加速度の大きさをg として, 次の各問に答えよ。 出した。 X(1) おもりが受ける糸の張力の大きさはいくらか。 (2)円運動の角速度と周期は,それぞれいくらか。 指針 地上で静止した観測者には, おもり は重力と糸の張力を受け, これらの合力を向心力 として,水平面内で等速円運動をするように見え る。この場合の向心力は糸の張力の水平成分であ る。 (1)では,鉛直方向の力のつりあいの式, (2) では,円の中心方向 (半径方向) の運動方程式を立 てる。なお,円運動の半径はLsin0 である。 解説 (1) 糸の張力の大き 基本問題 210 211 212 .00S 00 TH g m m(Lsin0) w²=mg tane w= L cose 2 Lcose =2π w 周期Tは,T= 第Ⅱ章 力学Ⅱ 別解 (2) お (2) おもりとともに 0 さをSとすると, 鉛 直方向の力のつりあ いから, Scoso S 円運動をする観測者 には、Sの水平成 と遠心力がつりあっ てみえる。 力のつり あいの式を立てると L m (L sine) w² 0 Scoso-mg=0 S=mg SsinO mg cose (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」 から, Ssin0=mgtan (2)の運動方程式と同じ結果が得られる。 m(L sine) w²-mgtan0=0 Point 向心力は、重力や摩擦力のような力の 種類を表す名称でなく,円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 mg

解決済み 回答数: 1
物理 高校生

(4)なぜθ=0°を代入するのですか?

必修 基礎問 62 薄膜の干渉Ⅱ 図1は波長の単色平行光線が, 空気中か らガラスの表面をおおう厚さdの薄膜に、入射 角0で入射したとき, 光が反射, 屈折 (屈折角 ゆ) する様子を示している。 空気と薄膜の境界 面上で反射する光はAA'DEの経路 を進み, 薄膜とガラスの境界面上で反射する光 入 A A' B 0 D 1 空気 B' n2 d 薄膜 22 C n3 ガラス 図 1 はB→B'→C→D→Eの経路を進む。 ここで, AB, A'B' はそれぞれ同 位相の波面である。空気, 薄膜の屈折率をそれぞれ1, 2 とし,n22はガラス の屈折率 n3 より小さいものとする。 (1) 光が点Cおよび点Dで反射するとき, 光の位相の変化量をそれぞれ答えよ。 (2)2つの反射光の光路差をもたらす部分の経路差をd, Φを用いて表せ。 (3)2つの経路から来た光が点Eで弱め合う条件をd, 0, n2, 入 を用いて表 せ。 ただし,m=0, 1, 2, ... とする。 (4) d=1.00×10-7 [m], n2=1.40 として, 白色光 を垂直に入射させた。 反射光のうち干渉で打ち消 し合う波長を求めることにより, 何色に色づいて 見えるか。 必要ならば、 図2の色相環を用いよ。 図2には円周に沿って [nm] 単位で色光の波長 を示している。 この図において,円の中心に対し 770nm 380nm 640nm 赤紫 430mm 橙 青 590 nm 黄 ** 550 nm 490mm 図2 色相環 て向き合っている2つの色光を混合した場合にも, 白色に見える。この これら2色は互いに補色(余色)であるという。 例えば、 白色光から 色が消えると補色の緑色に見える。 (甲南

未解決 回答数: 1
物理 高校生

物理の作図での疑問です! この問題はおもりを皿に乗せているので垂直抗力も考えると思ったのですが、回答を見ると考慮してませんでした!なぜ考えないのでしょうか、、?

必修 基礎問 7 運動方程式 I 図1のように, 水平な台の上に質量 M の 木片を置き, 台の端に取り付けた滑車を通 して, 伸び縮みしない軽いひもで皿と結び, 皿の上に質量mのおもりをのせる。 重力 加速度の大きさをgとして, 以下の問いに 答えよ。 ただし, 滑車はなめらかに回転し、 滑車と皿の質量は無視できるものとする。 木片 I. 木片と台の間に摩擦がない場合の運動を考えよう。 (1) 木片の加速度の大きさを求めよ。 (2) ひもの張力の大きさを求めよ。 Ⅱ. 実際には, 木片と台の間には摩擦がある。 静止摩擦係数μと動摩擦係数μ'を求める ため, おもりの質量m をいろいろと変え て木片の運動を調べ, 次の結果を得た。 (a) m≦m では, 木片は運動しなかった。 (b)m>m では, 木片は等加速度運動を した。 (c)と加速度の大きさαの関係をグラ フにすると, 図2のようになった。 (3) 木片と台の間の静止摩擦係数μ を求めよ。 木片の加速度の大きさ az 着眼点 座標軸は、加速度の方向とそれに垂直な方向にとるとよい。 物理基礎 ■ Point 6 運動を分解して 「静止または等速度運動 力のつりあいの式 加速度運動 運動方程式 おもり 図 1 ●動摩擦力 固定面上の物体では, 運動の向きと逆向きに働く。 その大きさF は,F=μ'N (μ'動摩擦係数, N: 垂直抗力の大きさ) ●着眼点 1.定滑車を介して糸でつながれた物体 の加速度の大きさは等しい。 (右図 4 は微 小時間 4t における物体の変位の大きさ。) 1F)を加えて 木 2. 軽い (質量を無視できる) 糸の張力の大きさ はすべての部分で等しい。 Ax | Ax=a (At) = 解説 I. (1), (2) 木片とおもりの加速度の大きさをαとし, ひもの張力の 大きさをTとすると, 木片とおもりの運動方程式は, 木片: Ma=T おもり:ma=mg-T ......① a A ② (大阪) N T m Mmg_ 0 m₁ m2 m M+m おもりの質量 図2 Mg T mg a (4)m=mz(>mi) のとき, 木片の加速度の大きさはα2 だった。 木片と 台の間の動摩擦係数μ' を求めよ。 ale (センター試験改) ●運動の第2法則 物体の加速度は物体に働く合力に比 例し、物体の質量m に反比例する。 運動方程式: ma = (=F+F2..., F, F, ・・・: 物体に働く力) 運動方程式の立て方 (i) 着目物体を決め、 働く力をすべてかく。 (ii) 直交座標を決めて、各方向での運動を知る (運動を分解する)。 (各座標軸について, 運動の法則を適用する。 ①,②式より,a=M+mg, T= II. (3)m=m のとき, 木片とおもりは動き 出す直前である。 よって, 木片に働く垂直抗 力の大きさをNとすると, 木片には最大摩擦 力μNが働き, 静止している。 ひもの張力の 大きさを T1 とすると, 力のつりあいより [N=Mg 木片: |Ti=UN おもり: Ti = mig ③~⑤式より, μMg=mg ......③ ......④ ....... 5 mi よって、 μ= M Sinto (4) ひもの張力の大きさを T2 とすると, 木片とおもりの運動方程式は, 木片: Maz=T2-μ'Mg .......⑥ おもり: m2d2=m2g-T2 ......⑦ m2g-(M+m2)a2 ⑥ ⑦ 式より (M+m2) a2=m2g-μ'Mg よって、μ'= Mg m (1) g (2) M+m Mmg_ M+m mi (3)μ M (4) μ' m2g-(M+m2)az Mg 18 2. 運動の法則 19

未解決 回答数: 0