学年

教科

質問の種類

物理 高校生

問3で私の答えが5番になったのですが答えは2で、どこが違ってきているか分かりません。

- Cosy) 9 0 分 直後での運動量保 **第18問 次の文章を読み、下の問い (問1~3)に答えよ。 (配点 12 【10分 図1のように水平な床の上に半頂角0の円錐をその軸が鉛直になるように固定 した。円錐の頂点から質量mの小球が長さの軽い糸でつるされており、円錐 と接しながら角速度で等速円運動をしている。 糸は伸び縮みせず。円錐面はなめ らかである。ただし、重力加速度の大きさをgとする。 とする 0 問 等速円運動の周期はいくらか。 正しいものを、次の①~⑥のうちから一 つ選べ。 T= 1 会 20 mgsin+lucos²8) O' m (gcose + lu'sin¹0) 2x W w² (r-mlsing) = gross and rw²³-mew singsing cos 問2 小球が糸から受ける張力の大きさSはいくらか。 正しいものを次の①~8 のうちから一つ選べ。 S 2 17 W 2x 2 m (gsinf-lo cos³0) mr W=gsind cost + me ursing 4mgcost-la'sin³0) mairt (gos + sin() W² = [sing wire w f =mrw² (0) (050)-1) b = 2,415 M Tsint F Tco₂0 mg J 20 I (groso + lu² sino) cost = g U₁² 11 groso sino 問3 をいろいろ変えて小球を等速円運動させるとき、小球にはたらく垂直抗力 の大きさは図2のように変化した。 図2のc)はいくらか。 正しいものを、下 の①⑤のうちから一つ選べ。 03 m = mg sing w²=lgsing 〒53 0 mr 4 masin mg (050+ lw²siño) = [ 9 V Isin __w² T mut sing gcos T mg sine + N mg coso 2 QF mg 1030 Im CO₂O mg Burg mycose + ml wsing T T my co me sinfu = ((stein² ou ² ) 9 Icos my cosp 図2 Ex mg = m + cos w² g r como e COD w² mgsing N mesingumasing macoso I + me sinow sint ex=lsing gsin 1 Tsing BSAJN + == T-mg cose my 00 Aug Tcose + Nsin0 = mg) Ttanf Too 30 My he ca = 3 mrw² mg _ru tand: g w² wid. ₂N

解決済み 回答数: 1
物理 高校生

①3-12でも分かるようLsinθとありますが、なぜ、Lcosθとならないのでしょうか?またなぜ、Lがついているのですか? ②線で②と引いたなんですが、線で①と引いた所と矛盾していませんか?線で①と引いた所は垂直抗力は働いていないと言っているのに対し、②では斜面に垂直な釣り... 続きを読む

外力がする仕事を確認しよう! 1 水平と0の角をなす粗い斜 面上の点Aに質量mの小 物体を静かに置いたところ, 小物 体は斜面をすべり出しはじめた。 点Aから距離Lだけ下の斜面上の 点Bを通過する瞬間の小物体の速 さはいくらか。ただし,重力加速 度の大きさをg, 小物体と斜面の 間の動摩擦係数を」とする。 のしてい 準備 重力の位置エネ ルギーの基準点を点Bの高 におきます。 基準点の選 び方は自由ですが,できるだけ計算が 簡単で間違いのない選びかたとしては, これが一番よいでしょう。 END 点Aの点Bに対する高さは,図 13-12からわかるようにL sin 0です。 そこで,点Aで小物体がもつ重力の 位置エネルギーUは, 橋元流で 解く! B m となります。 可演自 4 <sidcosではないのか B m 白内 mg 図3-11 A そこで,点Aにおける小物体の全力学的エネルギーE』は, Ex = 0 + Us = mgL sin 0...... ① m A 図3-12 m LsinO お上しているか相エネルギーはしてい (せい U₁ = mgL sin 0 てエー となります。 点Aでは小物体は静止していますから、運動エネルギーはQ です。 基準点 次に小物体が点Bを通過する瞬間の速さをBとします。 点Bでの位置エネルギーは0ですから, 点Bで小物体がもつ全力学的エ

解決済み 回答数: 2
物理 高校生

コンデンサー 電位 (5)です 解説にある、 「S1,S2を開閉しても変化しない」 ということの意味が分かりません 教えて欲しいです🙏🙏

必修 基礎問 72 コンデンサーのつなぎかえ 図のように, 3個のコンデンサー C1, C2, C3, 2個の電池 E1, E2, 2個のスイッチ S1, S2からなる回路がある。 3個のコンデン サーの容量はすべてCであり, 2個の電 池の起電力はともにVであるとする。 は 162 HH ●電荷保存の法則 孤立部分の極板電 荷の和は保存される。 式の立て方の手 順は, ① 孤立部分を見つけ, 変化前の電荷 を確認する。 E₁ じめの状態では,各スイッチは開いており、各コンデンサーに蓄えられた電 荷は0 とする。 また,点Gを電位の基準 (電位0) とする。 1. スイッチ S1 を閉じた。 点Xの電位は(1) れた電荷は (2) である。 2.次に, スイッチ S」 を開き, スイッチ S2を閉じた。 点Xの電位は(3) (V) C2= Point 43 着目する極板の電荷: Q着目= C(V 着目V 相手) (0) である。 3. さらに,スイッチ S2 を開いて, スイッチ S, を閉じた。 点Xの電位は 電池 V (4) である。 4. このようなスイッチ操作を繰り返したとき, 点Xの電位は (5) に近づ く。 (上智大) 精講 ●極板電荷 コンデンサーの極板 A, B の電位をそれぞれ VA, VB, コンデンサーの電気容量をCとすると, それぞれ の極板の電荷QA,QB は右図のようになる。 すな わち,着目する一方の極板の電位を V 日, 向かいあう他方の極板の電位をV相手 QA=C(VA-VB) とすると, G コンデンサー C2 に蓄えら S2 (VA) E2- AB 接地点 ( 電位0) (V: 仮定) (VB) -QB=C(VB-VA) 「孤立部分 ② 回路の電位を調べ, わからないところは仮定する。 孤立部分のすべての極板電荷を求め, 電荷保存の式を立てる。 3 ●回路の電位 原則 (i) 接地点を定め, 電位の基準 (電位0) とする。 (i) 一つながりの導線は同電位である。 素子の両端の電位差 (i) 電池正極側は負極側より電位がVだけ高い。 Q (Ⅱ) コンデンサー: 電荷が正の極板から負の極板の向きにだけ電位が下がる。 : () 抵抗 電流の向きに RI だけ電位が下がる (電圧降下)。 着眼点 コンデンサーにつながる抵抗 (十分に時間が経過した場合) 電流 は 0抵抗の両端は同電位 (1),(2) コンデンサー C1, C2は直列で,電 1/12cv-/12/cr 解説 気容量が等しいので,C1, C2 の電圧は 11 となる。 よって, 点Xの電位は, C2 の電圧と等し いから, 2=1/12/1 U₁² よって, 2 の電気量 Q2 Q2=(1/2)=1/2CV (3) 点Xの電位をV」 とすると, コンデンサー C2, C3のX側 の極板電荷の和が保存されることより, 11 0+12CV=C(Vi-V)+CV よって, Vi=201 (4) スイッチ S1 を閉じる前, コンデンサーCのX側の極 板電荷は12CV, C2のX側の極板電荷は 12 CV である。 よって、点Xの電位を2 とすると, 電荷保存の法則より、 -1/12CV+242CV=C(u2-V) + Cu 5 8 (5) スイッチ S1, S2 を開閉しても変化しないことから, S1, よって, u2= V S2を同時に閉じた場合と同じ状態になる。 点Xの電位を V とすると,電荷保存の法則より、 0=C(V-V) +C (V-V) + CV よって、a=2 3 (1) 2/1/201 V (2) 12/2CV (3) 2 200 31 ト ¹-CV C(V-V) -C(V-V) (V) (V.) 2CV1 T-CV₁ T-i/cr -CV 2 G (0) G (0) -C(M2-V) C(M2-V) (V) (V) 2 (5) V 3 .X (u) _Cu FCM2 DE CV- G (0) CV. G(0) (V) 19. 電場 コンデンサー 163 第4章 電気と随気

解決済み 回答数: 1