学年

教科

質問の種類

物理 高校生

高校1年の物理基礎、加速度についての質問です。 写真下線部のところで、なぜ0.1で割るのか理解できません。加速度とは1秒間に速度がどれくらい増えるのかを表すものですよね? 図では0.040を0.4にすでに秒速に直しているため、1秒に0.16m増えるということになりませんか... 続きを読む

10 第1運動とエネルギー Let's Try! 例題 5 加速度 <-11 斜面に台車を置き, 静かに手をはなして台車を運動させ,このようす を1秒間に50打点打つ記録タイマーでテープに記録した。 台車 このテープの5打点ごとの長さを測定したところ, 右下図のようにな った。この数値を分析して, 台車の加速度の大きさを求めよ。 解説動画 A B D タイマー テーブ E 0.040m 0.056m 0.072m 0.088m 指針 5打点の時間は0.10秒である。 0.10 秒ご との平均の速さを, 各区間の中央の時刻にお ける瞬間の速さとみなしてその差をとると, 同じく 0.10 秒ごとの速さの変化が得られる。 解答 0.10 秒ごとの平均の速さを求め、その差 を0.10秒で割ると, 平均の加速度が得られ る(右表)。 0.10秒ごとの 移動距離 (m) 0.10 秒ごとの速 各区間の平均 平均の加速度 の速さ(m/s) さの変化(m/s) (m/s²) AB 0.040 0.40 0.16 1.6 BC 0.056 0.56 0.16 1.6 CD 0.072 20.72 0.16 1.6 99 DE 0.088 0.88 よって 1.6m/s2

回答募集中 回答数: 0
物理 高校生

物理基礎の質問です 図aでは運動方程式、図bでは力のつりあいの式を立ててますが、なぜ運動方程式の物体Bについての式ではma=T-mgでT=mg▶︎ma=mg-mg▶︎ma=0にならないんですか? T=mgでつりあってるんじゃないんですか?

mのおもりBをつるした。 物 体Aと斜面との静止摩擦係数 μo, 動摩擦係数をμとして,次の問いに答えよ。 m B (1) 0 0 つまり板を水平としたとき, Bは下降した。 その加 速度の大きさを求めよ。 (2)001 のとき,Aが斜面下方へすべり始めた 。 M を求めよ。 (3)001のときのBの上昇加速度の大きさを求めよ。 「解説 (1) 図a で, 糸は軽いので, 両端の張力Tは等しい。 Aは「もうすべっている」 (p.41)ので, 動摩擦力μNを受ける。 〈運動方程式の立て方> (p.56)で. STEP Aは右向き, Bは下向きの 同じ大きさの加速度をもつ。 STER 2 図のように軸を立てる。 STEP 3 Aについて、 A μN a1 : 運動方程式: Ma1= +T-μN...... ① v : 力のつり合いの式: N = Mg... ② Bについて X: 運動方程式 ma」= +mg-T ③ ①+③より, N YA -X B 必ず 等しい Mg a₁ mg Tを消すためのおき, (M+m)a = mgμN まりの式変形♪ ②を代入して,aについて解くと, m-μM a₁ g 答 M+m 図 a 1 と同じ向きの力は 正, 逆向きの力は負 →ナットクイメージ m→∞にもっていくと, ag つまり, Bの自由落下に近づく 第5章 運動方程式 | 59

未解決 回答数: 1
物理 高校生

(1)では遠心力を考慮していないですが、遠心力を考慮する時は[遠心力を考慮し]と記載されますか? また、⑵のつり合いの式の両辺にmがついてますが打ち消さなくていいんですか?

<問8-4 角速度で回転する円板に、支柱を取りつける。 質量mのおもりに糸をつけ 柱の頂点に結びつけたところ, 支柱と糸は角度をなして静止した。おもりと回転 の中心の距離をとし、以下の問いに答えよ。 ただし重力加速度の大きさを とする。 (1) 糸の張力の大きさを,m,g,eを使って表せ。 (2) 遠心力を考慮し, 物体にはたらく水平方向の力のつり合いの式を立てよ。 (3) おもりの円運動の運動方程式を立てよ。 さて,遠心力の考えかたを身につけるべく問題を解いていきましょう。 (2),(3)が大事な問題ですから,しっかり理解してくださいね。 <解きかた (1) mg.8で表すので,鉛直方向に注目しましょう。 糸の張力の大きさをSとおくとおもりにはたらく鉛直方向の力のつり 合いより Scos0=mg S= mg cose (2) 「遠心力を考慮し」とあるので、 おもりに観測者を乗せて考えます。 観測者は円運動することになるので, 回転の中心に向かって加速度 a=rw2で運動しているということです。 観測者からすると, おもりには慣性力ma=mrw²が回転の外向きにはた らいて見えます。 また、おもりには糸の張力がはたらくので、力のつり合いより Ssin0=mrw2 (1)の結果より Ssin0=mg sin0 Emgtane cose よってmgtand=mrw答 (3) おもりにはたらく向心力はSsin0で、角速度 w半径1の円運動をするので Ssin0=mr2 mgtan0= mrw2 ・・・答 (2)と(3)を比べると同じ式になりましたね。 遠心力は円運動の慣性力です。 しっくりこない人はChapter7 を復習して、理解を深めておきましょう。 問8-4 円板が m 回るんだね 8 08 W → (1)鉛直方向の力のつり合いを考えて Scoso=mg S= mg COS Omr Ssin 0 20 mrw おもりの上に観測者を乗せて 考えると,F=mrw の遠心力 を上図のように受けるので 力のつり合いより Ssin0=mrw2 W mg cos0 mgtan 6=mrw どちらも結果の式は 同じだが,考えかたが 違うんじゃ (3) 0 Scos 0 Img S sin a=rw² おもりは回転の中心に向心力 Ssin を受ける。 円運動の 運動方程式より Ssin=mrw² wwww ww ma F mg tan 0=mrw² (合 ここまでやったら 別冊 P. 40~

回答募集中 回答数: 0
物理 高校生

なぜ答えは③になるのでしょうか

図1に示すように、磁束密度の大きさが B 〔T] でy軸の正の向きを向いた一様 な磁場 (磁界) 中で, 細い導線でできた長方形の一巻きコイル ABCD が回転する。 辺AB と辺 CD の長さはα 〔m〕 であり,辺BCと辺DAの長さは6〔m〕 である。 辺 AB, BC, CD の電気抵抗は無視できるが, 辺 DAの電気抵抗は R [Q] である。 点Aは座標原点にある。 コイルは軸にある辺AD を軸にして,軸の正の側か ら見て反時計回りに一定の角速度w 〔rad/s] で回転している。 一巻きコイルの自 己インダクタンスは無視できる。 必要であれば以下の公式を用いてもよい。 sin (a ±3 = sin a cos β ± cosa sin 3 cos(a±β)= cos a cos β 干 sin a sin β Z (複号同順) 図1のように, 軸の正の向きと辺ABのなす角が0 〔rad〕 のとき, 辺BCの速度 ア である。 辺BCの中にある電荷-e [C] (ただ の成分 [m/s] はv= 0-0のとき、 le > 0) を持つ自由電子の速度のæ成分もと同じとすれば, 0<0く 電子は イ のローレンツ力を受ける。 これによって, 閉じている一巻きコ イル ABCD には誘導電流が流れる。 2 これを,コイルを貫く磁束が時間的に変化するという見方で見てみよう。 コイル の面と常に垂直でコイルとともに回転する矢印Nを図1のようにとる。 コイルの面 を矢印Nの向きに磁束線が貫く場合, コイルを貫く磁束は正, 逆向きに貫く場合 πT を負とする。 0 の範囲がー <0 の場合,磁束線はコイルを矢印Nの向きに買 2 2 いており, コイルを貫く磁束 (0) 〔Wb] は ウである。ファラデーの電磁誘

回答募集中 回答数: 0