学年

教科

質問の種類

物理 高校生

2番でなぜN=mgとならないのでしょうか? 向心力が働くみたいなことは、なんとなくわかるのですがどうも納得できないです。 教えて頂きたいです

~14, 求めよ。 べり出す のつりあい ngy J 215.2 AN ② "s") Scost-mg=U mg coso Ssine S= (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」から, mg 1 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜mid 面上の高さんの点から静かにすべりおりた。斜面 の最下点は半径rの円の一部になっている。重力 加速度の大きさをg として,次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 天一 www 指針 (1) では,力学的エネルギー保存の 法則から速さを求める。 この結果を用いて (2) では、最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし, す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, -mv² m (L sint) w-mg tanu=U Point 向心力は,重力や摩擦力のような力の 種類を表す名称でなく、円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 09 213 (基本問題 mgh= v=√2gh (2) 重力と垂直抗力の合力が,最下点での小物 th 体の向心力になる。 半径方向の運動方程式は, 大 v² _=N-mg N m r r (1) の結果を用いて N=mg(1+2h) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において、 等速円運動と同様の運 動方程式を立てることができる。 | 8. 円運動 101

解決済み 回答数: 1
物理 高校生

どうして(1)で遠心力を考慮していないのでしょうか?速くすればするほどmrω²/sinθ分大きくなっていくのではないのでしょうか?

基本例題12 円錐振り子 図のように、長さの糸の一端を固定し、他端に質量m のおもりをつけて, 水平面内で等速円運動をさせた。糸と 鉛直方向とのなす角を0, 重力加速度の大きさをyとして, 次の各問に答えよ。 (1) おもりが受ける糸の張力の大きさはいくらか。 (2) 円運動の角速度と周期は,それぞれいくらか。 指針 地上で静止した観測者には, おもり は重力と糸の張力を受け, これらの合力を向心力 として、水平面内で等速円運動をするように見え る。この場合の向心力は糸の張力の水平成分であ る。 (1) では,鉛直方向の力のつりあいの式(2) では円の中心方向 (半径方向) の運動方程式を立 てる。なお,円運動の半径はUsin0 である。 解説 (1) 糸の張力の大き さをSとすると, 鉛 直方向の力のつりあ いから, Scost=mg mg coso S = - こ S Scost Ssine img (2) 糸の張力の水平成分 Ssin0mgtan0が向 心力となる。 運動方程式 mrw² = F から、 m (Usind) w2=mgtan0 周期T は,T= 2π W 基本問題 55,56,57 = =2π 00 (= Icoso g g l cos 0 別解 (2) おもりとともに 円運動する観測者に は,Sの水平成分と 遠心力がつりあって みえる。 力のつりあ いの式を立てると, (2) の運動方程式と同じ結果が得られる。 m (Isine) w²-mg tan0=0 m m (Isin) w² Ssin0=mgtan mg 【Point 向心力は、重力や摩擦力のような力 の種類を表す名称でなく、円運動を生じさせる 原因となる力の総称で、 常に円の中心を向く。 第Ⅰ章 力学

解決済み 回答数: 1