学年

教科

質問の種類

物理 高校生

(1)では遠心力を考慮していないですが、遠心力を考慮する時は[遠心力を考慮し]と記載されますか? また、⑵のつり合いの式の両辺にmがついてますが打ち消さなくていいんですか?

<問8-4 角速度で回転する円板に、支柱を取りつける。 質量mのおもりに糸をつけ 柱の頂点に結びつけたところ, 支柱と糸は角度をなして静止した。おもりと回転 の中心の距離をとし、以下の問いに答えよ。 ただし重力加速度の大きさを とする。 (1) 糸の張力の大きさを,m,g,eを使って表せ。 (2) 遠心力を考慮し, 物体にはたらく水平方向の力のつり合いの式を立てよ。 (3) おもりの円運動の運動方程式を立てよ。 さて,遠心力の考えかたを身につけるべく問題を解いていきましょう。 (2),(3)が大事な問題ですから,しっかり理解してくださいね。 <解きかた (1) mg.8で表すので,鉛直方向に注目しましょう。 糸の張力の大きさをSとおくとおもりにはたらく鉛直方向の力のつり 合いより Scos0=mg S= mg cose (2) 「遠心力を考慮し」とあるので、 おもりに観測者を乗せて考えます。 観測者は円運動することになるので, 回転の中心に向かって加速度 a=rw2で運動しているということです。 観測者からすると, おもりには慣性力ma=mrw²が回転の外向きにはた らいて見えます。 また、おもりには糸の張力がはたらくので、力のつり合いより Ssin0=mrw2 (1)の結果より Ssin0=mg sin0 Emgtane cose よってmgtand=mrw答 (3) おもりにはたらく向心力はSsin0で、角速度 w半径1の円運動をするので Ssin0=mr2 mgtan0= mrw2 ・・・答 (2)と(3)を比べると同じ式になりましたね。 遠心力は円運動の慣性力です。 しっくりこない人はChapter7 を復習して、理解を深めておきましょう。 問8-4 円板が m 回るんだね 8 08 W → (1)鉛直方向の力のつり合いを考えて Scoso=mg S= mg COS Omr Ssin 0 20 mrw おもりの上に観測者を乗せて 考えると,F=mrw の遠心力 を上図のように受けるので 力のつり合いより Ssin0=mrw2 W mg cos0 mgtan 6=mrw どちらも結果の式は 同じだが,考えかたが 違うんじゃ (3) 0 Scos 0 Img S sin a=rw² おもりは回転の中心に向心力 Ssin を受ける。 円運動の 運動方程式より Ssin=mrw² wwww ww ma F mg tan 0=mrw² (合 ここまでやったら 別冊 P. 40~

回答募集中 回答数: 0
物理 高校生

物理の質問です。 参考書のドップラー効果の公式の導出で分からない所があります。添付した画像が参考書の説明です。 c-v_s=f₀λ' (λ'=c-v_s/f₀) とありますがこれは波の進む速さの式と捉えることも出来ますよね。つまり、この式は振動数がf₀で、波長がλ'の波... 続きを読む

332 Chapter 13 ドップラー効果 13-2 音源が動くドップラー効果 13-2 音源が動くドップラー効果 静止した音源が音を発した1秒後 c(m) ココをおさえよう! 振動数」 ボクが最後尾 振動数∫の音源が,速さで近づくときに観測される振動数fは f=- 遠ざかる場合はf=cfusio ここでは,音源が動く場合のドップラー効果 (救急車の例) について考えます。 音源が発する音の振動数をfo [Hz] とします。 US このとき,音源は1秒間にf個の "波くん” を生み出しますね。 まずは音源が止まっている状態で,音を鳴らしている状況を考えましょう。 音速をc [m/s] とします。 音速というのは波の速さのことですから, 1秒間を切り取ると, 最初に発された“波くん"はc [m] 進み, 1秒後には音源からc〔m〕 までの間に fo個の“波くん”がいることになります。 速さ [m/s]で走る音源が音を発した1秒後 c-u (m) 振動数 速さい ボクが最後尾 先頭のボクは 目の速さは だからね 先頭のボクは スリムに なっちゃった 3 ということは、“波くん”1個分の幅は,入=〔m] と表すことができますね。 fo 今度は音源が速さで走りながら, 音を発しているとします。 1秒間を切り取ると, 最初に発された波くんはc 〔m〕 進みます。 同じ個の 1 “波くん”が ギュッと認められた んじゃ 静止の場合 c=foλ www fo 1秒後に。個目の”波くん” を発し終わるまでに,音源は距離 vs だけ動くので, c-vsの間に, fo個の“波くん”がいることになりますよね。 〔m〕に個の“波くん” fo 音源が走る場合 〔ml〕に個の“く” 補足 音の速さ [m/s] は音源の速さに関係ない。 →空気をベルトコンベアー、音を荷物と考えるとよい。 ダダダダ よいしょう このとき波くん1個分の幅, すなわち波長は入となって短くなります。 fo 止まって発した音と、走りながら発した音では、波長が変わってしまいました。 この波長の違いが音の高低の違いの原因になるのです。 続きはp.334で説明しま す。 ここで疑問に思っている人もいるかもしれないので補足です。 音源がで走りながら発されても、音の速さ とはならずにcのままです。 (先頭の“波くん"はc [m] しか進んでいませんね) これは、音が空気の振動なので 速さで 空気に伝わった瞬間に音源の影響を受けなくなるためです。 空気を速さのベルトコンベアー 音を荷物に例えるとわかりやすいですよ。 止まってベルトコンベアーに荷物を乗せても、走りながらベルトコンベアーに 荷物を乗せても荷物の進む速さは同じになりますね。 そんなイメージです。 走って乗せても、止まって乗せても 速さ c[m/s] ← 手をはなせば、物は同じ速さで進む

未解決 回答数: 1
物理 高校生

物理の質問です。 参考書のドップラー効果の公式の導出で分からない所があります。添付した画像が参考書の説明です。 c-v_s=f₀λ' (λ'=c-v_s/f₀) とありますがこれは波の進む速さの式と捉えることも出来ますよね。つまり、この式は振動数がf₀で、波長がλ'の波... 続きを読む

332 Chapter 13 ドップラー効果 13-2 音源が動くドップラー効果 13-2 音源が動くドップラー効果 静止した音源が音を発した1秒後 c(m) ココをおさえよう! 振動数」 ボクが最後尾 振動数∫の音源が,速さで近づくときに観測される振動数fは f=- 遠ざかる場合はf=cfusio ここでは,音源が動く場合のドップラー効果 (救急車の例) について考えます。 音源が発する音の振動数をfo [Hz] とします。 US このとき,音源は1秒間にf個の "波くん” を生み出しますね。 まずは音源が止まっている状態で,音を鳴らしている状況を考えましょう。 音速をc [m/s] とします。 音速というのは波の速さのことですから, 1秒間を切り取ると, 最初に発された“波くん"はc [m] 進み, 1秒後には音源からc〔m〕 までの間に fo個の“波くん”がいることになります。 速さ [m/s]で走る音源が音を発した1秒後 c-u (m) 振動数 速さい ボクが最後尾 先頭のボクは 目の速さは だからね 先頭のボクは スリムに なっちゃった 3 ということは、“波くん”1個分の幅は,入=〔m] と表すことができますね。 fo 今度は音源が速さで走りながら, 音を発しているとします。 1秒間を切り取ると, 最初に発された波くんはc 〔m〕 進みます。 同じ個の 1 “波くん”が ギュッと認められた んじゃ 静止の場合 c=foλ www fo 1秒後に。個目の”波くん” を発し終わるまでに,音源は距離 vs だけ動くので, c-vsの間に, fo個の“波くん”がいることになりますよね。 〔m〕に個の“波くん” fo 音源が走る場合 〔ml〕に個の“く” 補足 音の速さ [m/s] は音源の速さに関係ない。 →空気をベルトコンベアー、音を荷物と考えるとよい。 ダダダダ よいしょう このとき波くん1個分の幅, すなわち波長は入となって短くなります。 fo 止まって発した音と、走りながら発した音では、波長が変わってしまいました。 この波長の違いが音の高低の違いの原因になるのです。 続きはp.334で説明しま す。 ここで疑問に思っている人もいるかもしれないので補足です。 音源がで走りながら発されても、音の速さ とはならずにcのままです。 (先頭の“波くん"はc [m] しか進んでいませんね) これは、音が空気の振動なので 速さで 空気に伝わった瞬間に音源の影響を受けなくなるためです。 空気を速さのベルトコンベアー 音を荷物に例えるとわかりやすいですよ。 止まってベルトコンベアーに荷物を乗せても、走りながらベルトコンベアーに 荷物を乗せても荷物の進む速さは同じになりますね。 そんなイメージです。 走って乗せても、止まって乗せても 速さ c[m/s] ← 手をはなせば、物は同じ速さで進む

未解決 回答数: 0
物理 高校生

問題には直接関係ないのですが、B→Cの反応が等温変化なのにグラフが直線なのはなぜですか? 等温変化のときは曲線だと覚えていたので違和感があります...

262 ここがポイント 理想気体の状態方程式は、気体の圧力を、体積をV,物質量をn, 気体定数を R, 絶対温度をTと すればV=nRT である。 特に,単原子分子であれば、その気体の内部エネルギーは U=12nRT=123Dで与えられる。 解答 (1) グラフより pv=pc なので, pc を求めればよい。B→Cは等温変化で あるから, ボイルの法則を B, Cに適用して pcx(10×10-2)=(2.0×105)×(5.0×10-2) pc=pv=1.0×10 Pa また,状態方程式を用いて PDVD 1XRTD よって TD=PDVD R (1.0×10)×(2.5×10-2) (W 8.3 3.0×10²K)--W+0= TЯ-40 (2)状態Aの温度を TA とすると 3 AUDA = 1/2× -×1.0×R(TA-Tb) 状態方程式を用いて DAVA TA=- 1.0×R' VA=VD であるから = PDVD Tb=- 1.0×R AUDA-RTA-TH =R (DA― DD) × VA R 01+0=ULT PA-VA-PPT - VALPA-PD) 100XRTLST YoxR = 12 ((2.0×10)-(1.0×10×25×10の人 = 3.75×10°≒3.8×103J 東日 直頰 (3) 右図 V(X10-2m³) ボイル・シャルルの法則を用いて, 状 態 A, B, C の温度 TA, TB, Tc を求 める。 10 7.5 (1)より,T= 3.0×102K であるから T=2Tn=6.0×102K 5.0 B D 2.5 T=Tc=2T=4Tb=12×102K A→B, C→Dは定圧変化であるか ら, シャルルの法則が成りたち, Vと 0 3.0 6.0 9.0 12 Tは比例関係となるので, グラフは原点に向かう直線となる。 T(X10²K) FUL

解決済み 回答数: 1