学年

教科

質問の種類

数学 高校生

赤丸の部分はどういう意味ですか

んけんと確率 本例題 39 2人でじゃんけんを1回するとき,勝負が決まる確率を求めよ。 e) 3人でじゃんけんを1回するとき,ただ1人の勝者が決まる確率を求めよ。 34人でじゃんけんを1回するとき,あいこになる確率を求めよ。 (3) あいこ になる じゃんけんの確率の問題では,「誰が」と「どの手」に注目する。 (2) 誰がただ1人の勝者か 3人から1人を選ぶから 3通り どの手で勝つか 「グー」, 「チョキ」 「パー」 の3通り 「全員の手が同じ」 か 「3種類の手がすべて出ている」場合があ る。 よって、 手の出し方の総数は,これらの場合の数の和になる。 | 2人の手の出し方の総数は 329(通り) 1回で勝負が決まる場合, 勝者の決まり方は 2通り そのおのおのに対して, 勝ち方がグー, チョキ,パーの3通 りある。 よって 求める確率は 3×3 1 27 3 2×3 2 9 3 勝負が決まらない場合は、 2人が同じ手を出したときの後で学ぶ余事象の確率 (p.335) による考え方。 3 2 3通りあるから, 求める確率は 1- 9 3 (2) 3人の手の出し方の総数は 3°=27(通り) 3通り 1回で勝負が決まる場合, 勝者の決まり方は そのおのおのに対して、勝ち方がグーチョキ,パーの3通 りある。 よって、求める確率は 本八 34=81(通り) (3) 4人の手の出し方の総数は あいこになる場合は,次の [1], [2] のどちらかである。 [1] 手の出し方が1種類のとき 3通り [②2] 手の出し方が3種類のとき グーグーチョキ, パー}, {グー, チョキチョキ, パー},| グーチョキパー, パー}の3つの場合がある。 よって、求める確率は 出す人を区別すると,どの場合も 4! 2! 基本38 4! 通りずつあるから, 21 ×3=36 (通り) (1) 3+36 13 81 27 1人の手の出し方が3通り, 2人でじゃんけんをするか 3×3通り 1人の手の出し方が3通り, 3人でじゃんけんをするか ら 3×3×3 通り 3×3×3×3 通り 4人全員が 「グー」または 「チョキ」または「パー」 例えば {グー, グーチョキ, パー} で「グー」 を出す2人を 4人の中から選ぶと考えて =14/01(通り) 4C2×2!= p.338 EX30 329 2章 6 事象と確率

未解決 回答数: 1
数学 高校生

写真の問題の赤線部についてですが、なぜn≧1と書く必要があるのでしょうか? その上の行でΣとCをすでに使っていますが、ΣとCのnの部分は定義から、n≧1だから、赤線部の前にn≧1という条件はすでに考慮してるのではないのでしょうか?解説おねがいします。

基礎問 P 44 はさみうちの原理(I) 次の問いに答えよ. (1) すべての自然数nに対して,2"> n を示せ. AOAO k-1 (2) 数列の和 S. = 2 (1) anで表せ△〇〇〇 k=1 (3) lim Sm を求めよ. △△△△ n→∞ |精講 (1) 考え方は2つあります。 I. (整数)” を整式につなげたいとき, 2項定理を考えます. PROCE (数学ⅡI・B4 ⅡI. 自然数に関する命題の証明は帰納法 (数学ⅡI・B 136 Fet (2) Σ計算では重要なタイプです. (数学ⅡB 120 S=Σ(kの1次式) k+c (r≠1) は S-S を計算します. (3) 極限が直接求めにくいとき, 「はさみうちの原理」という考え方を用います. bn≦an≦en のとき limb=limcn = α ならば liman=α n→ 00 n→∞ n→∞ この考え方を使う問題は,ほとんどの場合,設問の文章にある特徴がありま す. (ポイント) どういう意味? 解答 (1) (解I)(2項定理を使って示す方法) n (x+1)=2nCkck に x=1 を代入すると k=0 2"=nCo+nC1+nC2+..+nCn ¹) n=1 F²³5, 2²nCo+nC₁=1+n>newhere 2">n ( 解ⅡI) (数学的帰納法を使って示す方法 ) 2"> n (i) n=1のとき 左辺=2,右辺=1 だから, ①は成りたつ

回答募集中 回答数: 0
数学 高校生

赤く丸をしたbの問題で解答の方に二階微分した後の式がなぜ(-1/4)(-1/4)(H-27)になるのか分かりません。教えてください🙇‍♀️

QA At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation dH (H- (H-27), where H(t) is dt measured in degrees Celsius and H(0) = 91. (a) Write an equation for the line tangent to the graph of Hat t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. (b) Use 2017 APⓇ CALCULUS AB FREE-RESPONSE QUESTIONS (a) dH d²H dt² to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. (c) For t < 10, an alternate model for the internal temperature of the potato at time 7 minutes is the function -= − (G - 27)²/3, where G(t) is measured in degrees Celsius dG G that satisfies the differential equation dt and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3 ? 564 at (21-27) - == 2-16 To = - = (H(3)-27) 4 -64 = HB)-27 -37 = H (3) (b) _d²fi © 2017 The College Board. Visit the College Board on the Web: www.collegeboard.org. GO ON TO THE NEXT P

回答募集中 回答数: 0
1/4