学年

教科

質問の種類

数学 高校生

なんで右辺の最高次の項が2x^nになるのか分かりません!!

364 第6章 微分法 Think 例題 186 関数の決定 の多項式f(x)の最高次の項の係数は1で, (x-1)f'(x)=2f(x) +81 (S-PR (0)\(\\\ がつねに成り立つ。 このとき f(x) を求めよ. (南山大) [考え方 まず、f(x) の最高次の項のみを考える. また、「つねに成り立つ」とは 「恒等式」ということである。 mimi 解答 f(x) は定数関数にならないから, 最高次の項をx" (nは n-1 自然数)とおくと、 f'(x) の最高次の項は, 1 したがって, 与式の左辺の最高次の項は, 右辺の最高次の項は、 2x" 与式は恒等式であるから, ①,②より, nx"=2x" も恒等 式となる. よって, n=2 STARS これより, f(x)は2次式なので, f(x)=x2+ax+b とお くと,f'(x)=2x+a 与式に代入すると (x-1)(2x+a)=2(x2+ax+b) +8 (a+2)x+(a +2b+8)=0 ③がxについての恒等式であるから、 =a+2=0, a +2b +8=0 (公簿) したがって Focus ( RSD a=-2,b=-3 よって, f(x)=x²-2x-3 a=0+0-01-0-8=(0) 88-0+ (S-)-01-(8-)-8=(3- nxn- N nxn ..... 練習 (1) x 多項式f(r) |100 の 3+601-58- +56=0+501- ***** f(x)=a,x"+......+ax+a (a,0)とおくと, f'(x)=na"x"'++αとなる. 定数関数なら (f'(x)=0 より f(x) = -4 となるか これは意に反する 最高次の項の係数に 1 f(x)をn次式と ると,f'(x) は (n-1) 次式 f(x)が次式(n≧1) ⇒f'(x) は (n-1) 次式 f(x) をn次式として, 最高次の項からnの値を決定する ③がつねに成り立っ どんなの値に ついても③が疲 り立つ 注》例題186 において, f(x) が条件を満たす (最高次の項の係数が1の) 定数関数, つまり, f(x)=1のとき, 与式は, (左辺)=(x-1)0=0, (右辺)=2·1+8=10 となり不適よって, f(x) は条件を満たす定数関数にならない. f(x) は定数関数ではないので、 係数比較は必要十分 性をもつ. JCB) (WY WEST また、例題 186 では 「最高次の項の係数は1」 とあるので「x"」 とおいたが、係数がわ Loor からないときは上のように 「a,x"」 とおくとよい. 例

回答募集中 回答数: 0
数学 高校生

140.2 これでも記述に問題ないですよね??

π 137,138 fr 基本例題140 三角方程式・不等式の解法 (2) … sin'0+ cos'0=1 0≦2のとき,次の方程式、不等式を解け。 (1) 2cos20+sin0-1=0 指針 複数の種類の三角関数を含む式は,まず1種類の三角関数で表す。 (1) cos²0=1-sin20, (2) sin²01-cos20 を代入。 ② (1) は sin だけ (2) は cos0 だけの式になる。 このとき, -1≦sin0≦1, -1≦cos 0≦1に要注意! ③3②で導いた式から, (1) : sin0 の値 (2):cose の値の範囲を求め, それに対応するの 値, 0 の値の範囲を求める。 CHART sin ← cos の変身自在に sin0+cos20=1 解答 (1) 方程式から 2(1-sin²0)+sin 0-1=0 整理すると 2sin²0-sin0-1=0 ゆえに (sin0-1)(2sin0+1)=0 よって 0≦0 <2πであるから sin0=1より sin0=- 1/1より したがって、 解は sin0=1, 125 (2) 不等式から 整理すると よって これを解いて 2 0=2/ 7 0= -π, 6 π 0=²2₁ 11 16 (2) 2 sin²0+5 cos 0-4>0 基本 137,138 π 7 Tπ, 6 11 6 200)-(0²203-1))=140200 YA TC 2(1-cos²0)+5 cos 0-4>0 2 cos²0-5 cos 0+2<0 (cos 0-2) (2 cos 0-1) <0 0≦0<2のとき, -1≦cos0≦1であるから常に COS 0-2 <0である。 したがって 2cos 0-10 すなわち cosA> 050<x<0 2n WIL Lt 1 HOFONIA 191 -1 cos20=1-sin20 -1/201 6 70 -1 5 重要 143 YA 1 sin20=1-cos20 O 1 x 11. 6' |-1| 1 1 x 2 21.CO 221 4章 2 三角関数の応用 23 'Da

未解決 回答数: 1
数学 高校生

分かりません。教えてください!

計算問題の場合は必ず、 公式→数値代入→答えの順番で記入すること。 配点は全て2点 合計52点分 つぎ 問1 次の文章を読み「 内に当てはまる言葉を書き入れなさい。 (1) 時間や温度、面積や容積などのように、大きさだけで表される ① だかい (2) ①に対し、力や速度、磁界のように大きさと ② を持つ蓋を③ ひょうじゅうほう ASD 423225 (3) A=(ab)のような表示方法で表す方法をベクトルの ④ 表示という。 お +422 Asa 315 (4) A=ALΦのような表示方法で、大きさと位相差を表す方法をベクトルの ⑤ 表示という。 という。 (5) 交流回路において抵抗だけの回路は、電流と電圧vの位相差は無い(位相差0)。この状態を⑥という。 あちお (この回路において、抵抗R [Ω]、電圧V[V] と電流I [A]の関係は、I=⑦ で表す。 という。 あられ こうちゅう (7) 交流におけるインダクタンス (コイル)だけの回路において、電流の流れをさまたげる働きを持つものをX=WL=2Lです。この×⑧とい う。なお、この回路において電流は電圧vより位相が="[rad] 40 (8) XL [9] はインダクタンスL [H] と周波数 [Hz] の横に⑩する。 (9) 交流におけるコンデンサだけの回路において電気の流れをさまたげる働きを持つものをXc で表し、次のような式 1 1 @C 271C (10) Xc [2] は、 静電容量C [F] と周波数 † [Hz] の積に 13 で表す。このXを① ]という。この回路において電流は電圧vより位相がゆ=-radlだけ⑩ 2 10 する。 とには進むまたは遅れるのいずれかが入る。また、10分には比または反比例のいずれかが入る。 ② 3 4 8

回答募集中 回答数: 0
数学 高校生

141.2 どこか記述に問題あったりしますか?

222 基本例題 141 三角比を含む対称式・交代式の値 √2 2 sin0+ cos0= (1) sin Ocose, sin'0+ cos' 0 解答 指針▷ (1) の sin @cos 0, sin+cos' 0 はともに, sin 0, cos 0 の対称式 (p.32, p.50 参照)。 →和sin0+cos 0 積 sin Ocos0の値を利用して, 式の値を求める。 ......... (1)(sin Acos 0)条件の等式の両辺を2乗すると, sin²0+ cos20 と sin Ocos0 が現れ る。 かくれた条件 sin ²0+ cos20=1 を利用。 >6>0 [0€K<<== /2 (1) sin0+cos0= の両辺を2乗すると 2 sin²0+2sin@cos0+cos²0=1/2 (0° 0 <180°) のとき, 次の式の値を求めよ。 (2) sino-cose, tan0- ゆえに よって また (sin'0+cos30) a²+b^²=(a+b)(a²−ab+b2)を利用。 (2) sin-cose については、 まず (sin 0- cos 0)' の値を求める。 0°<B <180° と (1) の結 果から, sin0-cos 0 の符号に注意。 = よって②から sinocos0=-- sin³0+cos³0 = (sin 0+cos 0) (sin²0-sin cos 0+ cos²0) 30 -√(1-(-1))-5√/2 (2)0°<<180° では sin0>0であるから, ① より cos0<0 ゆえに sin0-cos0 > 0 ② ①から (sin0-cos0)^=1-2sin/cos0= 12/10 -√²/²=4 tan 0- 1 sin0-cos0= 1 tan 0 = .. 1+2sinocos0= ① sin cos 0 cos o sin 8 (sin0+cos0) (sino-cos 0) sin²0-cos²0 sinocoso 00000 sinocos0 [類 広島修道大] 1 tan 0 √2 - 42.16+ (-1)=-2/3 √6 = -2√3 |基本 27,140 ab や '+b²のように, a と を入れ替えてももとの式と 同じになる式を, a bの対 称式という。 <「‥.」 は 「ゆえに」 を表す記 号である。 ◄sin³0+cos³0 = (sin0+cos0) 3sin/cos0 (sin0+cost) から求めてもよい。 - 1/ <0. sinocos0=- sin0>0であるから cos 0 < 0 sin 0 cos 0 <tan0= sin 0, cos 0 の式に直す。 求めた sin @cos 0 sin0-coseの値を利用。 を利用して,

回答募集中 回答数: 0