学年

教科

質問の種類

数学 高校生

数B 画像の赤丸のとこはなぜ2×1.96をするのですか?

470 基本 例題 77 母比率の推定, ころ, 8本が不良品であった。 合いかぎ全体に対して不良品の含まれる 率を95%の信頼度で推定せよ。 (2) ある意見に対する賛成率は約60% と予想されている。 (弘 くたと この意見に対す ある賛成率を 信頼度 95% で信頼区間の幅が8%以下になるように推定した い。 何人以上抽出して調べればよいか。 CHART & SOLUTION 信頼区間の幅 信頼区間の式における土の差 467 基本事項 (2) 標本の大きさが大きいとき, 標本比率を R とすると, 母比率に対する信頼度 R(1-R) n R(1-R){-1.9 の信頼区間は [R-1.96 「R(1-R) , R+1.96y n よって, 信頼区間の幅は 1.96 n 解答 (1) 標本比率 R=- -=0.02, 8 400 R(1-R) =0.007 400 R(1-R)\ n よって、不良品の含まれる比率』の信頼度 95%の信頼区間 は [0.02-1.96×0.007,0.02+1.96×0.007] 1.96×0.007≒0.014 9761 ゆえに [0.006, 0.034] すなわち (2)標本比率を R, 標本の大きさをn人とすると, 信頼度 -0.6% 以上3.4%以下 EX AA 59 6 95%の信頼区間の幅は3.92 R(1-R) 品 n 信頼区間の幅を 8% 以下とすると 出 R(1-R) 3.92/ ≦0.08 【R(1-R) 2×1.96 n 標本比率 R は賛成率で R=0.60 とみてよいから 0.6×0.4 3.92 ≤0.08 n nは大きいから、Rは早 比率 p=0.60でおきま えてよい。 よって 両辺を2乗して 3.92/0.6x0.4 0.08 n≧492×0.24=576.24 この不等式を満たす最小の自然数nは577 したがって, 577 人以上抽出すればよい 100 3.92 =49 0.08

解決済み 回答数: 1
数学 高校生

教えていただきたいです( . .)"

- 分散 である。 おくと, 92 難易度★ 90 60 目標解答時間 SELECT SELECT 15分 以下の問題を解答するにあたっては,必要に応じて巻末の正規分布表を用いてもよい。 (1)ある学校で生徒会長選挙が行われた。 100人の生徒が投票し、そのうち36 人がAさんに投票した。 投票した100人のうち1人を選ぶとき,その人がAさんに投票していたら 1,投票していなければ 0の値をとる確率変数を Xとする。 ア Xの期待値は 標準偏差は エオ カキ である。 (2)2人の議員を選ぶ選挙が行われ,100万人の有権者が投票した。 この選挙ではより多い得票率 があれば確実に当選する。 開票率 1%, すなわち 10000人分が開票されたとき, Bさんに3600票 が入っていた。この開票された票を無作為に選ばれた標本とするとき, 標本比率は である。 これをBさんの得票率の母比率の推定値とする。 また, 母標準偏差もここから推定される であるとする。 エオ カキ ケ ここで、 10000 は大きいから,標本比率は近似的に正規分布 Np に従う。 コサシ に対する信頼度 99%の信頼区間は 得点の2 ク ケ ス セン × = 0.99 イウ コサシ ことがわ より, 小数第4位を四捨五入すると 0. タチツ Sp0 テトナ 点 10) 法集 107 である。 これより,p> 1/23 と推定できるので,Bさんは「当選確実」と判断できる。 (3)2人の議員を選ぶ選挙が行われ, 10万人の有権者が投票した。この選挙では 1/3 より多い得票率が あれば確実に当選する。 N人分が開票されて, 36% がCさんに投票していた。 Cさんの得票率の母 比率がに対する信頼度99%の信頼区間が(2) と同じ信頼区間で 「当選確実」 と判断することができ るとき, N= である。 二 | については,最も適当なものを,次の①~③のうちから一つ選べ。 ⑩ 100 500 1000 141 10000 (配点 10) (公式・解法集 109 統計的な

回答募集中 回答数: 0