学年

教科

質問の種類

数学 高校生

数3です。 この式変形を教えてください。

192 重要 例題 113 漸化式と極限 (5) ・・・ はさみうちの原理 数列{an}が0<a<3, an+1=1+√1+an (n=1,2, 3, ・・・・・・) を満たすとき (2)3-an+1< 1/12 (3-an)を証明せよ。 3 (1) 0<a<3 を証明せよ。 (3) 数列{an} の極限値を求めよ。 指針 (1) すべての自然数nについての成立を示す→ 数学的帰納法の利用。 (2) (1) の結果,すなわち an> 0, 3-an> 0 であることを利用。 (3) 漸化式を変形して, 一般項an をnの式で表すのは難しい。 そこで, (2)で示した不等 ! 式を利用し, はさみうちの原理を使って数列 {3-an} の極限を求める。 はさみうちの原理 すべてのnについて n≦an≦gn のとき limp=limgn=α ならば n-00 7140 なお、次ページの補足事項も参照。 CHART 求めにくい極限 不等式利用で はさみうち 解答 (1) 0<an<3 ① とする。 [1] n=1のとき, 与えられた条件から①は成り立つ。 [2] n=kのとき, ① が成り立つと仮定すると 0<a<3 n=k+1のときを考えると, 0<a<3であるから ak+1=1+√1+an>2> 0 練習 ③ 113 .….... ak+1=1+√1+an <1+√1+3=3 したがって 0<ak+1 <3 よって,n=k+1のときにも ①は成り立つ。 [1], [2] から,すべての自然数nについて ①は成り立つ。 3-An -(3-an) (2) 3-an+1=2-√1+an 2+√1+an (3)(1),(2) から 0<3-an S したがって liml 2 (13) (34)=0であるから 11-00 lim(3-an)=0 1400 liman=3 n-1 ≤ (1) ² (3-a₁) 3 n-00 LE a=2, n≧2のとき an liman = a n→∞ 3 2 [類 神戸 p.174 基本事項 3 基本 105 van-1 1 数学的帰納法による。 ◄0<a₁<3 KOM 0<a から √1+an>1 an<3から √1+ak <2 <3-α>0であり、a>0か ら 2+√1+an>3 n≧2のとき, (2) から 3-an< (3-an-1) <(1) ²(3-an-2)..... n-1 · < (-/-) "¹¹ (3-as) 3 を満たす数列{an}について

回答募集中 回答数: 0
数学 高校生

微分の問題です 黄色マーカーで引いたところの解説をお願いします

基礎問 第5章 微分法 148 81 微分法の不等式への応用 (1) <>0のとex> 1/2+x+1 が成りたつことを示せ。 (2) limx=0を示せ . (3) lim xlog.x=0 を示せ. +0 精講 (1) 微分法の不等式への応用は数学ⅡIB 96, 数学ⅡI・B 97 で学習 済みです。 考え方自体は何ら変わりはありません。 (2) 78,(3)は演習問題 79 にでています。 大学入試で,これらが必要になるときは, Ⅰ. 直接与えてある (78) ⅡI. 間接的に与えてある (演習問題79) ⅢI.証明ができるように、使う場面以前に材料が与えてある (81) のいずれかの形態になっているのがフツウですが,たまに,そうでない出題も あります。 だから, この結果は知っておくにこしたことはありません. もちろん、証明 の手順もそうです. (1) や (2) 不等式の証明 (3) 極限という流れは 44,45で 学んだはさみうちの原理です. 解答 (1) f(x)=e³- (エ) (12/2+x+1) とおく. f'(x)=e*-(x+1), ƒ"(x)=e³-1 x>0のとき, ex>1 が成りたち, f"(x) >0 したがって,f'(x) は x>0 において単調増加. ここで,f'(0)=0 だから,x>0のときf(x) よって, f(r) は x>0 において単調増加. ここで, f(0)=0 だから, x>0 のとき、f(x)>0 ゆえに, x>0 のとき, e> ¹> {√x²+x+1 y=er上の点(0, 1) における接線を 参考 求めると, y=x+1 になります。 こ のとき,右図より y=e²y=x+1 より上側にあります。だから, x>0 では >x+1, すなわち, f'(x) > 0 であることが わかります. (2) x>0 0²¾, (1)* _e²> {/x²+x+1> {/√ x ³² 0<x<²/2 …". 0<><>²+²x+2=0<<x+2+³ .. I lim (-tlogt)=lim += 0 t→+0 1-0 et また, lim (-tlogt)=lim (tlogt) t→+0 演習問題 81 lim -= 0 だから, はさみうちの原理より lim- 2 →∞ I 注解答では,+1を切り捨てていますが, そのままだと次のように なります. t +0 ポイント く (3) (2)において, x=log / とおくと,t+0 のとき→∞ ‡t, e²= elox+= 1, x=-logt だから, t+0 limtlogt=0 すなわち, lim xlogx = 0) x→+0 lim -=0 I→∞ P (1) x>0 のとき (2) lim loga →∞ IC 2 log. X -= 0 を示せ . I -1 x>10gを示せ. 3/4 0 y=e* 149 y=x+1 lim -=0 lim xlog.x=0 I-00 x→+0 第5章

回答募集中 回答数: 0