学年

教科

質問の種類

数学 高校生

高校数学です。波線の部分が分かりません。解説お願いします。

実戦問題 91 2つの放物線で囲まれた図形の面積の最大・最小 2つの放物線y=-x+10x-1 … ① および y=x+2(p+2)x + -6p ・・・ ② が異なる2点で交わっている。 (1) 定数の値の範囲は アイ <<ウである。 (2) 定数がアイ <<ウの範囲で変化するとき、放物線 ②の頂点Pは直線 y=エオカキの クケ <x<コサの部分を動く。 (3) 放物線 ①,②の交点のx座標をそれぞれα, β (α < β) とおく。 放物線 ①,② で囲まれた図形の面積Sをα β を用い て表すと, S= P (B-α) シ ス となるから 面積Sはチのとき最大値 をとる。 となる。また, (B-α) の値をを用いて表すと, (β-α)2=セがソ [ツテ ト p+ 解答 (1) ①,② を連立して -x+10x -1 = x2 +2(p+2)x + -6p 整理して 2x2+2(p-3)x + p2 -6p+1= 0 ... 3 ①,②が異なる2点で交わるとき, 方程式 ③ の判別式をDとすると D 083+=(-3)² − 2(p² − 6p+1) > 0 -p2+6p +7>0より よって, 求めるの値の範囲は (2)②を変形して + (+1) (p-7) < 0 -1<p<7 AS YOU 1 y={x+(力+2)}-p+2)+p-6p=(x+p+2)-10p-4 よって、放物線 ②の頂点Pの座標を(X, Y) とおくと 放物線 ②の頂点は Key X=-p-2... ④, Y=-10p-4 … ⑤ ④ より =-X-2 これを⑤に代入して Y = 10X +16 また, -1<< 7 であるから -1 <-X-2 <7 より -9 < X < -1 (+) ゆえに、点Pは直線 y=10x+16の-9 <x<-1 の部分を動く。 (3) 2次方程式 ③ の異なる2つの実数解をα, β (α <β) とおくと、求 める面積Sは (-2,-10p-4) 24 ① S = = "[(x+10x-1){x+2(p+2)x + p°-6p}]}dx >>- ( ② -J"{2x2+2(-3)x+p-6p+1}dx Key =-2/(x-a)(x-β)dx=-2・ 2.{1/(-a)}=(-a) 5 x 3 また、③において, 解と係数の関係により α+β= -(p-3), aβ= 20 p2-6p+1 H 2次方程式 ax2+bx+c=0 の2つの解をα β とすると b よって (β-α) = (a +B)-4aβ={-(-3)}2-4・ p2-6p+1 a+β=- a' a TOY=-p²+6p+7=-(-3)²+16 =128 2 (B-α)24 よって, -1 <<7において, (β-α)2はp=3のとき最大値16を とるから, β-α >0より, β-αは p = 3 のとき最大値4をとる。 したがって, 放物線 ① ② で囲まれた図形の面積Sは 16--- 43 p = 3 のとき 最大値 64 3 3 攻略のカギ! 10 3 p Key 1点Pの軌跡は,P(x,y)とおいて,xの関係式を導け30 (p.138) K2 放物線と1直線、2放物線で囲まれた図形の面積は,∫(x-α)(x-B)dx = 1/2(B-α) を利用せよ - 42 (p.171)

未解決 回答数: 0
数学 高校生

高校数II2次方程式の解の存在範囲です。 下の写真の問題の(2)で、どうして赤波線で示した式になるのかがわからないです! どなたか教えてください🙇‍♀️

82 基本 例題 49 2次方程式の解の存在範囲(2) 300000 についての2次方程式(a+6=0が次のような解をもつよう な実数 αの値の範囲をそれぞれ求めよ。 (1) 2つの解がともに2以上である。 (2) 1つの解は2より大きく、他の解は2より小さい。 CHART & SOLUTION Op.76 基本事項 5. 基本 48 重要 4x2 定 CH 実数解 α β と実数の大小 a-k, β-kの符号から考える (1) 2以上とは2を含むから、等号が入ることに注意する。 a≥2, B≥2 (a-2)+(B-2)≥0, (a-2)(B-2)≥0) (2)α<2<β または β <2<α (α-2) (B-2) <0 解答 x2-(a-1)x+a+6=0 の2つの解をα, βとし, 判別式を Dとすると D={-(a-1)}2-4(a+6)=a2-6a-23 解と係数の関係により α+β=a-1, aβ=a+6 (1)≧2,B≧2 であるための条件は,次の① ② ③ が同 時に成り立つことである。 D≧0 (a-2)+(B-2)≥0 (a-2)(B-2)≥0 ① E+ ① 513 inf 2次関数 f(x)=x2-(a-1)x+a+6 このグラフを利用すると (1) D≧0, (軸の位置) ≧ 2, ƒ(2)≥0 a-1 2 D f(2) ①から a²-6a-23≥0 ゆえに a≦3-4√23+4√2 ≦a ②から at β-40 ゆえに よって a≥5. ⑤ ③から aβ-2(a+β)+4≧0 ゆえに a+6-2(a-1)+4≧0 ④ ⑤ ⑥ の共通範囲を求めて ・④ (a-1)-4≥0 よって a≦12... ⑥ 3+4√2 ≦a≦12 (2)α<2<β または β < 2 <αであるための条 3-4/2 件は(α-2)(B-2)<0 よって α+6-2(a-1)+4<0 これを解いて α>12 B 2 (2) f(2)<0 (p.765 補足 参照) 5 3+4/2 12 a ←このとき, D>0 は成り 立っている。 (p.754 解説 参照) 2 (x

未解決 回答数: 0