学年

教科

質問の種類

数学 高校生

数ⅠAデータの分析です これどうして6番は◎になるんですか?? 例えば第一四分位数が整数でないとき、それより小さい値を削除したら最小値は第一四分位数より大きくなって範囲が変わりますよね? 画像横ですみません

650 700 (分) 図1 15歳以上の男性の各活動の時間(単位:分) の47都道府県別の平均値の箱ひげ図 I 450 オ 500 550 このデータと箱ひげ図について, 正しいと判断できるものは オ である。 600 I - 39 - と の解答群 (解答の順序は問わない。) ⑩ 1次活動のデータの値が最大である都道府県と, 2次活動のデータの 値が最大である都道府県は同じである。 OVE 081 ① 1次活動のデータの値が最大である都道府県と, 2次活動のデータの 値が最小である都道府県は同じである。 × 1次活動, 2次活動, 3次活動のうちで, データの範囲が最大である のは1次活動である。 ⑩ 1次活動, 2次活動, 3次活動のうちで,データの四分位範囲が最大 であるのは1次活動である。 ④ 1次活動, 2次活動,3次活動のうちで,どの都道府県も1次活動の データの値が最も大きい。 ⑤2次活動のデータにおいて,第1四分位数より小さい値と,第3四分 23 位数より大きい値をすべて削除すると、残りの値の個数は25個である。 ⑤ 次活動のデータにおいて、 第1四分位数より小さい値と、第3四分 位数より大きい値をすべて削除すると, 残りの値からなるデータの範囲 は,もとのデータの四分位範囲に等しい。 (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

数Aの通過点の確率の問題です。 (2)なのですが、なぜ自分が解いた方法が間違っているのか教えてください。 よろしくお願いします。 〈(1)では、4回中1回が東なので、4C1としていたので同じように考えたつもりなのですが、、、〉

例題 230 通過点の確率 右の図のような道路があり, A地点からB地点まで 最短距離で移動する。 ただし,各交差点において東、 北のいずれの進路も進むことができるときは, 東, 1 北に進む確率はともに で, 一方しか進めない 2 きは,確率でその方向に進む。 (1) C地点を通過する確率を求めよ。 (2) D地点を通過する確率を求めよ 思考プロセス 問題を分ける (1) Cを通る確率= 3 A→C→Bの道順の総数 A→Bの道順の総数 (理由) A→Bの道順のうち, 右の図の 1,②の道順となる -(1/2)x1 4 X 15 →Bにおいて, とするのは誤り 確率は ①= ●では2方向に進むことができるが, ●では1方向にしか進むことができない。 となり,確率が異なる。←同様に確からしくない (2) 25 = (1/2)x11 1¹ A A →C ③の確率・・・ 4回の交差点で,東に1回,北に3回となる確率 いずれも2方向に進むことができる。 (2) 右の図の交差点をEとする。 (ア) A→E→Dの順に進む場合 1④ の確率・・・ どの道順でも必ずBにたどり着くから,確率1 (考えなくてよい) (2) Dにたどり着くまでの●の個数で場合分けする。 Action » 複数の交差点を通過する経路の確率は, 進行可能な方向に注意せよ 進むことができる交差点を, A も含めて4か所通過する。 この4か所の交差点で,東に1回、北に3回進むと C 地 点を通過するから, 求める確率は 3 C. (1/2)^(1/1)-1/14 E D その確率は (1) x1=1/6 (イ) A→C→Dの順に進む場合 その確率は, (1) の結果を利用して (ア),(イ)は互いに排反であるから、求める確率は 1 1 3 + 16 8 16 ■(1) C地点に到達するまでに, 東, 北のいずれの方向にも東北のいずれの方向に も進める交差点と東京 たは北にしか進めない交 差点がある。 例題231さ B 4個のさい (1) 目の最 (3) 目の春 × ²/1/12 = 11/12 のプロセス 条件の言 (1) 最大 (2) (1) C 「1. 「1 な 解 (1) C地点を通過した後のこ とは考えなくてもよい。 Acti (3) A E地点を通過するかどう かで場合分けする。 A地点からE地点に進む とき, 東, 北のいずれの 方向にも進める交差点を 4か所通過し、 すべて北 に進む。

回答募集中 回答数: 0
数学 高校生

数Aの通過点の確率の問題です。 黄色マーカー部分なのですが、なぜC地点を通過した後のことは考えなくてもいいと分かるのでしょうか。 解説をお願いします。

例題 230 通過点の確率 右の図のような道路があり, A地点からB地点まで 最短距離で移動する。 ただし、 各交差点において東, 北のいずれの進路も進むことができるときは, 東, 北に進む確率はともに 1/2 で一方しか進めないと きは,確率でその方向に進む。 (1) C地点を通過する確率を求めよ。 (2) D地点を通過する確率を求めよ。 思考プロセス 問題を分ける (1) Cを通る確率 = A→C→Bの道順の総数 A→Bの道順の総数 4 とするのは誤り。 (理由) A→Bの道順のうち、 右の図の①,②の道順となる 8 =(1/2)x 11 確率は =(1/2)x 1 = X 15 ②= ●では2方向に進むことができるが, では1方向にしか進むことができない。 となり,確率が異なる。 ← 同様に確からしくない 4 C 解 (1) C地点に到達するまでに, 東, 北のいずれの方向にも 進むことができる交差点を, A も含めて4か所通過する。 この4か所の交差点で、東に1回 北に3回進むと C 地 点を通過するから、求める確率は 3 ..(/)(/1/2)=1/2 4 D AC →Bにおいて, ③の確率・・・・ 4回の交差点で,東に1回、北に3回となる確率 いずれも2方向に進むことができる。 1④ の確率・・・ どの道順でも必ずBにたどり着くから,確率1(考えなくてよい) (2)Dにたどり着くまでのの個数で場合分けする。 Action » 複数の交差点を通過する経路の確率は,進行可能な方向に注意せよ (SE) A 例題2 4個 (1) 東北のいずれの方向に も進める交差点と, 東ま たは北にしか進めない交 差点がある。 思考プロセス (3) C地点を通過した後のこ 1. * to! T & Fl

回答募集中 回答数: 0
数学 高校生

(3)の0は、(2)では近似値?で13と16を使っているのになぜ(3)では分母は12にしているのですか?

ヒストグラムの選択 データを合わせた平均値や分散 ②のうち、複数の合計が20であるものは②だけであるので、A の 29 難易度 ★★ べて整数) をまとめたものである。 Aテストの得点を変量x, B テストの得点を変量で表し、 てあるクラスの加入の生徒の入テストとBテストの再度 (100点満点であり、 y 100円 90 yの平均値をそれぞれで表す。 ただし、表中の数値はすべて正確な値であり, 四捨五入され、 いないものとする。 80円 70 60 50 40 30 20 [[10] 生徒番号 1 *** X 62 *** y 57 ww 47 55 1220 A 61.0 B 20 合計 平均値 中央値 (1) A=アイウ, B=エオ」 (2) 変量xと変量yの散布図はキ www [x-x (x-x)² y-ỹ (-y)² (x-x)(y-y) 169.0 13.0 13.0 1.0 1.0 -6.0 0 1020304050 60 70 80 90 100 X 0.0 0.0 1.5 62.5 42.0 カ 42.5 である。 60 100 y 90 80 70 150808010 40 *** 36.0 3064.0 153.2 30 目標解答時間 20 に当てはまるものを、次の⑩~②のうちから一つ選べ。 ① 10] 3.0 0.0 0.0 -2.0 ... 9分 9.0 5014.0 250.7 90.5 0 102030405060 70 80 90 100 XC *** -18.0 -3468.0 -173.4 -44.0 y [100 90 80 70 60 50 得点は 40 30 20 10 ② 30 A, B. た。 ただ (1) 各 スト 10 20 30 40 50 60 70 80 90 100 X (3) このデータの特徴に関する説明のうち,正しいものはクである。 クに当てはまるものを、次の⑩~②のうちから一つ選べ。 ただし, 変量xと変量yの散布 キのときとする。 図は ⑩ Bテストの得点の標準偏差はAテストの得点の標準偏差の1.5倍より大きい。 ① Aテストの得点の最頻値は62.5点である。 ② 上の20人の生徒の得点のデータに, Aテストで90点, Bテストで80点をとった生徒1人 の得点のデータを加えたとき, xとyの相関係数は増加する。 (配点10) <公式・解法集 28 30 31 33 34 C 以 (2)

回答募集中 回答数: 0
数学 高校生

マーカーのところがよく分かりません!! 答えていただけたらうれしいです!

数学Ⅰ・数学A [2] 表1は、令和3年度における47都道府県別の一住宅あたりの延べ床面積の 平均値のデータであり、値の大きい順に並んでいる。 ただし, 延べ床面積とは, 建物の各階の床面積の合計を表す。 都道府県 富山県 福井県 山形県 秋田県 新潟県 石川県 島根県 岐阜県 長野県 青森県 鳥取県 表1 47 の都道府県別の一住宅あたりの延べ床面積の平均値 都道府県 延べ床面積 (m²) 延べ床面積(m²) 103.15 静岡県 [145.17 山口県 102.30 138.43 99.95 愛媛県 135.18 99.57 熊本県 131.93 128.95 大分県 98.02 宮城県 126.60 97.24 123.08 長崎県 97.20 121.77 高知県 95.32 121.62 愛知県 95.01 121.58 宮崎県 94.39 121.52 広島県 93.52 119.90 兵庫県 93.40 115.49 北海道 91.23 112.65 千葉県 89.74 112.48 鹿児島県 88.67 111.94 埼玉県 87.15 111.05 京都府- 86.93 110.87 福岡県- 84.66 110.42 神奈川県 78.24 108.58 大阪府 - 76.98 107.79 沖縄県 75.77 107.14 東京都 65.90 106.54 105.72 105.64 岩手県 滋賀県 福島県 佐賀県 山梨県 徳島県 奈良県 三重県 香川県 茨城県 群馬県 |栃木県 和歌山県 岡山県 (出典:国土交通省のWeb ページにより作成) - 32- (数学Ⅰ・数学A 第2問は次ページに続く。) また、次の表は, 表1のデータを度数分布表に整理したものである。 第3四分位数 表2 度数分布表 階級 (m²) 60以上70未満 70以上80未満 80 以上 90 未満 90以上100未満 100 以上 110 未満 110 以上 120 未満 120 以上 130未満 130以上140未満 140 以上 150 未満 度数(都道府県数) - 33- 1 3 5 11 8 8 7 3 1 数学Ⅰ・数学A (数学Ⅰ・数学A 第2問は次ページに続く。)

回答募集中 回答数: 0