学年

教科

質問の種類

数学 高校生

(イ)の解説の最後から2行目についてです。なんで−2の時、イコールが含まれるのかわからないです

10 1次不等式/解の存在条件, 整数解の個数- k0 を実数とするとき、 2つの不等式|2x-3|<2, kx-5|<kを同時に満たす実数ェが存 在するようなkの値の範囲は,k> である. (東京経大 ) (イ)不等式を満たす整数の個数は[ である. 正の数αに対して, 不等式 <αを満たす整数ェの個数が4であるとき, αのとりうる値の範囲は [ ]である. (京都産大・理, 工, コンピュータ理工(推薦)) 不等式の解の存在条件 a<x<bを満たすェが存在する条件は a <bである. また, a<b かつc<dのとき, a<x<bかつc<x<d を満たすェが存在する条件は,a <d かつc <bである. 数直線を活用する (イ)のような問題では,数直線を 書いて考えると明快である. 答えの範囲で端点が入るかど a<dだけだとダメ a<d かつc<bならOK うか (範囲がくかか)を間違えやすいので,十分注意を払おう. ■解答■ (ア) 2x-3|<2のとき, -2<2-3<2 .. a bc a b も ① |kz-5|<kのとき, -k <kx-5<k.k>0により, -1++ -5 5 ...2 k>から<1 5 -<1+ に注意すると, ①と②を同時に満たすェが存在する条件は, ② ① 5 5 57 -1+ .. k k 7 .. k>10 ( k>0) エ (イ)のと のとき、早くよ 18 2 18 よって, -2.2<x<2.8・・・ であるから,これを満たす整数ェは, 5 14/OK -1+ダメ 2 であるから、下図により, 4つの 2,1,0,1,2の5個)-1012→3 整数が-1, 0, 1,2と決まってし 2 <aのとき, -a<ェー - <a .. -a+² <x<a+ 2 7 7 まう. ....... ③ 16 くよく 20 7 7 ③ ほに関して対称な範囲 これを満たす整数ェの個数が4個のとき, そのェは,r=-1, 0, 1,2 であるから、2 かつ 2<a+/-/3 +1/2-1 <as 16 * 120 19 12 <a≤ .. <as⋅ 7 7 7 16 7 + ← -2-1 0 1 2 3 これが1だと解にェニー1が入ら なくなり不適 10 演習題 (解答は p.26) (ア) 2つの不等式|a|≦2a+3 ① | x-2a|>4a-4……………② について, (1) 不等式①を満たす実数ェが存在するような定数αの範囲を求めよ. (2) 不等式①と②を同時に満たす実数ェが存在するような定数αの範囲を求めよ. ( 鳴門教育大 ) (イ)ェについての連立不等式 Jax <3a (a-3) |(a-3)x≥a(a-3) 整数がちょうど3個となる整数αの値を求めよ. がある. この連立不等式を満たす (イ) 区間の端点が整数 ( 鳴門教育大 ) になることに着目。 19

解決済み 回答数: 1
数学 高校生

出題者は、なんで少なくともひとつは1以上かどうかっていう問題を作ろうとしたんでしょうか?

12 不等式の証明/ABA-B≧0 a, b, e を正の実数とする. X= 3a+b 3b+c 3c+a Y= Z= a+3b' b+3c' c+3a について次の問いに答えなさい。 3 (1) 1/12 <X<3 を証明しなさい。 (2) X,Y,Zのうち、少なくともひとつは1以上であることを証明しなさい。 (3) <X+Y+Z<7 を証明しなさい。 5 3 差が0以上を示す (明治学院大径社法) A. Bがェの式として, A2Bを示すことを考えてみよう。このとき A-B20 を示すのが1つの定石である。 AとBを合流させることによって式変形の仕方の可能性が高 まるし、目標が0以上を示すことになるので、式変形の方針も定め易くなる.例えば,平方完成をして (実数)+(実数)の形を導いたり。 因数分解をして (正の数)×(正の数) の形を導いたりすればよい。 ■解答■ (1) x-1 = 3a+b 1 3(3a+b)-(a+3b) a+3b 3 3(a+3b) 3a+b a+3b 3-X=3- よって、1/32<x<3 8a 3(a+3b) >0 8b →0 a+3b a+3b 3Ca+3b)-(3a+b) a b は正の実数 X7.299 3/776 ← (2-0)za) (2+)=0 83000 3a+b (2) X-1= 3a+b-(a+36) --l= 2(a-b) a+3b a+3b a+3b すべての 同様にして, Y-1- 2(b-c) Z-16 2(c-a) 6+3c 分子の正 c+3a a,b,cのうちでαが最大のとき,bであるから X21 (a-b>0) a. b c のうちでもが最大のとき, beであるから 21 ) a,b,cのうちでcが最大のとき, c2aであるからZ21 (0-1) したがって, X, Y, Zのうち, 少なくともひとつは1以上である。 (3) (1)により, 1/32<x<3, 1/3 <<3, 1/32 <Z<3が成り立つ。 これ以降, 背理法を用いてもよい X <1 かつY <1 かつて<1と仮 定すると, a<bかつb<cかつ <a が成り立つ。 a<bかつb<cのときa<cと なるが,これはに矛盾する X21のときは,Y/1/32 1/3 とから、X+Y+Z>1+ 1 1 5 + Y, Zについても Xにおいて文 字を入れ換えただけだから, Xと 同様の不等式が成り立つ。 3 3 3 Y≧1, Z≧1のときも同様である。 また,ab.cのうちの最小のものに着目すれば(2)と同様にして,X,Y,Zの与式の左は 11/13 うち、少なくともひとつは1以下であることが分かる. X1のときは,Y <3, Z <3 とから,X+Y+Z<1+3+3=7 +1から出 てきた。 右辺の7は, 3+3+1 か ら出てくることに着目、 Zのときも同様である。 12 演習題(解答は p.28) (1)400のとき、不等式+2b+ab2 を証明せよ。また、等号が成り立つ のはどのようなときか (2) a,bを実数とする。不等式+1+12√(a-1)2+(6-1)を証明せよ。 また、等号が成り立つのはどのようなときか (2) 0以上なので (左)(右)20を ( 東北学院大) 示せばよい。 19

解決済み 回答数: 1
数学 高校生

(2)の[2]がなぜ解なしになるのかわかりません。

基本 例題 31 文字係数の不等式の導立 αを定数とする。 次の不等式を解け。 (1) ax+2>0 CHART & THINKING 00000 (2) ax-6>2x-3a+x 基本 29 文字係数の不等式 割る数の符号に注意 23 (1) 「ax +20 から ax-2 両辺を4で割ってx2」では誤り! αが正の数のときは上の解答でよいが、負の数のとき不等号の向きはどうなるだろうか? また,a=0 のときは両辺をαで割るということ自体ができない。 不等式 Ax>B を解くときは,A>0,A=0, A<0 で場合分けをする。(2)も同様。 解答 (1) ax+2>0 から ax>-2 [1] α>0 のとき x>- 2 a 不 まず, Ax>B の形に。 次に,A>0,A=0, A<0 で場合分け。 [2] a=0 のとき,不等式 0x>-2 はすべての実数xa=0 のときは,不等式 に対して成り立つから,解はすべての実数。 2 [3] α < 0 のとき x<- a (2) ax-6>2x-3α から よって ax-2x>-3a +6 (a-2)x>-3(a-2) > に a=0 を代入して検討 する。 すべての実数x に対して 0·x=0 である。 [1] a-2>0 すなわち>2 のとき 両辺を正の数 α-2で割って x>-3 [2] α-2=0 すなわち α=2のとき 不等式 0x>-30 には解はない。 [3] α-2<0 すなわち a < 2 のとき 両辺を負の数 α-2で割って x <-3 α-2は正の数なので, 不等号の向きはそのまま。 の向 ← α-2は負の数なので, 不等号の向きは逆になる。 INFORMATION 不等式 Ax > B の解 B 不等号の向き [1] A >0 のとき x> A は変わらない 例 [2] A=0 のとき B≧0 ならば解はない 0.x>5 解はない B<0 ならば解はすべての実数 0•x>0 解はない [3] A<0 のとき x <- B 不等号の向き A が逆になる 注意 不等式が Ax≧B の場合は, A= 0 のとき 0.x> -5 ・・・ 解はすべて 「B>0」ならば解はない, 「B≦0」 ならば解はすべての実数となる。 ③ PRACTICE 31Ⓡ αを定数とする。 次の不等式を解け。 の実数 (1) ax-1>0 (2) x-2>2a-ax

解決済み 回答数: 1