学年

教科

質問の種類

数学 高校生

数A 組み合わせ カの問題がなぜ答えのようになるのかが分かりません。 教えていただけると嬉しいです!

8 以下は自然数, は以下の自然数とする。 次の先生と百まんさん に当てはまる記号や数式, 数字を とイヌワシ君の会話を読み、 答えよ。 大間 8 は解答欄に答のみを記入せよ。 先生:C の値をどのように考えたらいいと思う? 百まんさん: n個から0個とる組合せの総数なので0じゃないのかな。 イヌワシ君:まって, 確か。 Po=1,0!=1 と定めたはずだよ。 このことと, ア C, C,= 7! と表されることから,Co= イ と定め るといいんじゃないかな。 先生:その通り。 他の考え方もあり, 例えば6人から4人を選ぶことは, 選ば ない2人を決めることと同じなので, 6C4 = C2 の等式が成り立ちます。 一般に,n個から個取る組合せの総数は, n個から ウ個取る組 合せの総数と同じなので,nC=n = "q ・①の等式が成り立 (ウ) つ。 これより C の値は I と等しいと考えることが出来るので Cは(イ)と言えます。 百まんさん: ①の他にもCに関連する等式はありますか? 先生: 1 C, C,+C1-1 ・・② という等式が成り立ちます。 まんさん:例えばC=C+オ となるはずですね。確かめてみま す•••••• ほんとだ, 確かに両辺とも126になっています。 先生 ②の等式は次のように説明出来ます。 1.2.3.. +1のn+1枚 のカードから枚取る組合せを のカードに注目して、次の2つの 組合せのグループに分けます。 (A) 1 のカードを含んでいる組合せのグループ (B) のカードを含まない組合せのグループ (A) は カ通りあり、(B) はキ通りあります。 n+1枚のカードから枚取る組合せは必ず (A) か (B) のいずれかの グループに含まれているので,②の等式が成り立ちます。 イヌワシ君: なるほど。 この考え方を応用すれば新しい等式を作ることが出来 そうです。 を2以上の自然数として,n+2枚のカードからr枚 取る組合せを (A) 1 を含む組合せ (B) 1 を含まず 2 を含む組合せ (C) I も2も含まない組合せ に分類して考えると, 新しい等式が得られるのではないで しょうか。 先生 さすがイヌワシ君。 よく出来ました。

回答募集中 回答数: 0
数学 高校生

これの⑶ほんとに意味わかんないです、、 教えてくださいー😭

364 基本例題 21 組分けの問題 ( 1 ) 6枚のカード1,2,3,4,5,6がある。歌 (1) 6枚のカードを組Aと組Bに分ける方法は何通りあるか。 ただし,各組に 少なくとも1枚は入るものとする。さび (2) 6枚のカードを2組に分ける方法は何通りあるか。 基本20 (3) 6枚のカードを区別できない3個の箱に分けるとき, カード1,2を別々の 箱に入れる方法は何通りあるか。ただし,空の箱はないものとする。 指針 重複順列 → (1) 6枚のカードおのおのの分け方は, A,Bの2通り。 重複順列で 2通り ただし、どちらの組にも1枚は入れるから, 全部を A またはBに入れる場合を除くために -2 (2) (1) で, A,Bの区別をなくすために ÷2 (3) 3個の箱をA, B, C とし, 問題の条件を表に示すと, 右のようになる。 よって,次のように計算する。 (3,456 を A, B, C に分ける) (Cが空箱になる = 34,56をAとBのみに入れる) CHART 組分けの問題 0個の組と組の区別の有無に注意 このうち, A,Bの一方だけに入れる方法は 2通り よって, 組 A と組Bに分ける方法は 64-262 (通り) (2) (1) A,Bの区別をなくして 1 2 3 4 ↑ ↑ ↑ A A or or B B (1) 6枚のカードを,A,B2つの組のどちらかに入れる方 | A,Bの2個から6個取 解答 法は 2664 (通り) る重複順列の総数。 24通り AAA or or or or BBB B 3,4,5,6から少なくとも1枚- 練習 (1) 7人を2つの部屋 A,Bに分けるとき,どの部屋も1 ③ 21 望を 箱 カード A B C 1 2 62÷2=31 (通り) (3) カード1, カード2が入る箱を,それぞれA,Bとし, (3) 問題文に「区別できな 残りの箱をCとする。 A,B,Cの3個の箱のどれかにカード 3,4,5,6を入 れる方法は 34通り い」とあっても、カード 1が入る箱, カード2が 入る箱,残りの箱,と区 別できるようになる。 Cが空となる入れ方は, このうち,Cには1枚も入れない方法は したがって 3-24=81-16=65 (通り) A,Bの2個から4個取 る重複順列の総数と考え て 24通り (2組の分け方) ×2! =(A,B2組の分け方) L△

回答募集中 回答数: 0
1/10