数学
高校生
解決済み

(3)の解説で波線が引いてあるところと(4)で最小値がなんで4/3になるのかわからないので教えて欲しいです!!

基礎問 9 168 第6章 微分法と積分法 108 面積 (IV) を実数とする. 放物線y=x2-4x+4......①, 直線 y=mx-m+2......② について,次の問いに答えよ. (1)②はmの値にかかわらず定点を通る。この点を求めよ。 (2) ① ② は異なる2点で交わることを示せ. (3) ①,②の交点のx座標を α, B(α<B) とするとき,①,②で開 まれた部分の面積Sをα, β で表せ. (4)Sをmで表し,Sの最小値とそのときのmの値を求めよ。 精講 (1) 37 ですでに学んでいます。 「mの値にかかわらず」とくれば、 「式をmについて整理して恒等式」 と考えます. (2) 放物線と直線の位置関係は判別式を利用して判断します。 (3) 106ですでに学んでいますが,定積分の計算には101(2)を使います. = − f* {(x²-(m+4)x+m+2}dx a,Bは,2(m+4)x+m+2=0の2解だから S=- s---az-dz-(-a) 169 紙面の都合で途中の計算は省略してありますが、 101 (2)のようにき ポー(mtl)+(n+2)=0」 ちんと書いてください. (4)解と係数の関係より,α+B=m+4,aß=m+2 3葉でやってしまうと . (B-α)²=(a+B)2-4aß= (m+4)2-4(m+2) ......(*) =m²+4m+8 dBやなど制作数の関係って 表せなくなる。 S= S=1/11(3-4)22-1/2(m²+4m+8)/2 =1/2(m+2)2+42 よりm=-2のとき最小値 13 をとる。 平方完成 1 = (B-α) 6 本来は音(Ba)でだが2来で計算してたから3になるように指数をとる。 さ 参考 (*)は, よく見ると(2)のDです. これは偶然ではありません。 ax2+bx+c=0 (a>0) 2解をα, B(α <B) とすると, ―このもわからない? Q= -b-√D 2a B=- -b+√√D 2a ・B-æ==b+√D -b-√D VD 2a 解 答 2a a (1) ② より m(x-1)-(y-2)=0 <mについて整理 これがmの値にかかわらず成立するとき x-1=0,y-2=0 本間は α=1のときですから, (B-α)²=(√D)=D となるのは当然. このことからわかるように, 2解の差は判別式を用いて表すことも 可能で,必ずしも, α+ β, αβ から求める必要はありません。 (4) 21 (解と係数の関係) を利用します。 よって, mの値にかかわらず②が通る点は,(1,2) 第6章 (2) ①,②より,yを消去して r2-4x+4=mx-m+2 :. 判別式をDとすると, D=(m+4)2-4(m+2) =m²+4m+8 2-(m+4)x+m+2=0 必要なのか? 2章+220(平成 <D>0 を示せばよい y =(m+2)²+4>0 2この作業がなぜ よって, ①と②は異なる2点で交わる. (3) 右図の色の部分がSを表すので S= s="(mr-m {(mx-m+2)-(2-4.x+4)}dx O a 1 2 BI ポイント 演習問題 108 f(x-a)(x-3)dx=-(-a)³ y=4-x2 ...... ①, y=ax (a は実数) ・・・・・・② について,次の ものを求めよ. (1) ①,② のグラフが異なる2点で交わるようなαの値の範囲 (2)①,②のグラフで囲まれた部分の面積がとなるようなαの値
微分法 面積

回答

✨ ベストアンサー ✨

画像参照

ayaya

ありがとうございます!!

ayaya

あと出来れば波線が引いてあるところも教えて欲しいです🙇‍♀️

🍇こつぶ🐡

(3)波線部分は1/6公式というものです。
➖1/6を➕1/6(β➖α)^3にしてるから、∫の前に➖がついてます。
二次関数と一次関数で囲まれた面積計算で、上➖下より、直線➖下に凸放物線より、➖を∫の前に出してます。

1/6公式は以下参照
https://manabitimes.jp/math/594

ayaya

理解出来ました!ありがとうございます!

この回答にコメントする
疑問は解決しましたか?