数学
高校生
解決済み

二次関数の問題です。問題文にも書いていないのに何故実数解を持つと分かるんですか?

|実数x, yがx。+y=2 を満たすとき, 2x+yのとりうる値の最大値と最小値を 重要 例題 119 2変数関数の最大 最小 (4) 187 求めよ。また,そのときのx, yの値を求めよ。 点に注意。 指針>条件式は文字を減らす方針でいきたいが,条件式x+y=2から文字を減らしても、 2x+yはx, yについての1次式であるからうまくいかない。 そこで,2x+y=tとおき, これを条件式とみて文字を減らす。 計算しやすいように y=t-2x として yを消去し, x?+y°=2 に代入すると x?+(t-2x)=2となり, xの2次方程式になる。 xるこの方程式が実数解をもつ条件を利用すると,tのとりうる値の範囲が求められる。 [類南山大) 基本 98 入するとおい 合社 実数解をもつ→ Dz0 の利用。 ラフか 3章 13 CHART 最大·最 小 =tとおいて,実数解をもつ条件利用 THAHO 解答 2x+y=tとおくと ソ=t-2x 参考 実数 a, b, x, y につ いて,次の不等式が成り立つ (コーシー·シュワルツの不 二は ッともに2枚 る式は 1次,yが から,yを これをx+y°=2に代入すると x*+(t-2x)°=2 5x-4tx+t°-2=0 等式)。 整理すると このxについての2次方程式(2が実数解をもつための条件は、[等号成立は ay=bx] 2の判別式をDとすると S-(S+x (ax+by)s(α+6')(x"+y°) D20 a=2, b=1を代入すると い。 『ここで ー=(-2t)-5(-2)=D (2-10) aるあす (ト x°+y°=2 であるから ミード X (2x+y)°<10 よって0>トーx8 t-10S0 吹式一 に直す。 D20から ト>>1- これを解いて ー/10 Sts/10 ちら -V10 s2x+y</10 (等号成立はx=2yのとき) 送1-4t t=±/10 のとき D=0 で, ② は重解x= をもつ。 5 ーム このようにして, 左と同じ答 えを導くことができる。 2.5 V10 のから y=± 2/10 5 t=±V10 のとき x=± 5 (複号同順) のとき最大値(10 5 10 2/10 x= 5 したがって リミ V10 のとき最小値 - 10 2/10 ソミー 5 xミー 5 1?ry+2y?=2を満たすとき 直立求めよ。 S 2 |:2次不等式

回答

✨ ベストアンサー ✨

まず、なぜ文字で置く(=tとおく)のか?について説明します。

『2x+yは1をとりますか?』と聞かれたらどうしますか?
これは、2x+y=1であり、しかも、x^2+y^2=2となるような、実数xとyが存在するかどうか?にかかってますよね。

これを、全ての数で試すのは骨が折れます。そこで、代わりに文字tを使って調べるわけです。

そうすると、
2x+yがtという値を取るかどうかは、x^2+y^2=2となるような実数xとyが存在するかどうか?にかかってくることになります。
このように問題の条件を読み替えて、(同値変形と言います)
2x+y=tとなるときにもx^2+y^2=2とすることができるか?を考えることにします。
前者の式2x+y=tを変形するとy=t-2xとなります。
この式は代入できるので代入すると、
x^2+(t-2x)^2=2となります。
yが消えているので、xのみの方程式となりました。この式を満たす実数xが存在するためには、どんな条件が必要でしょうか?
といことから、それはこの方程式が実数解をもつこと、だとわかります。

わざわざ丁寧にありがとうございます😭💞何故x^2+(t-2x)^2=2の式が成り立つ為にはこの方程式が実数解を持つことなんですか??

こんぱち

x^2+(t-2x)^2=2 をみたす実数xを求めてみましょう。
それはこの式をxの二次方程式とみて解く必要がありますよね。
そして実際解けばわかりますが(解の公式を使います)、解はtを使って表すことができます。
しかし、tを使って表した解はいつでも存在するわけではなく、tの値によっては存在しないこともあります。

このようなときに、解が存在するかどうかを教えてくれるのが方程式の判別式なので、判別式を考えます。

めちゃくちゃ分かりやすいです😭💞本当にありがとうございます🎶

この回答にコメントする
疑問は解決しましたか?

この質問を見ている人は
こちらの質問も見ています😉