PromotionBanner

回答

参考・概略です

「a と b は、0<a<b を満たす定数とする。」

「座標平面上の点A(0,-a)と直線 ℓ:y=a に対して、」

「点Aからの距離と直線 ℓ からの距離の和が 2b である点の軌跡をCとする。」

(1) 軌跡C上の点P(x,y)について、y≧a のとき、y を定数 a,b を含む x の式で表せ」

Pから直線ℓに下した垂線の足をQとすると

 A(0,-a),P(x,y),Q(x,a) となり 

  AP=√{x²+(y+a)²}、PQ=(y-a)

 AP+PQ=2b から

   √{x²+(y+a)²}+(y-a)=2b

       √{x²+(y+a)²}=2b-(y-a)
   
         x²+(y+a)²=4b²-4b(y-a)+(y-a)²

       x²+y²+2ay+a²=4b²-4by+4ab+y²-2ay+a²

           x²+4ay=4b²-4by+4ab

           4(a+b)y=-x²+4b(a+b)

               y=-{1/(a+b)}x²+4b

――――――――――――――――――――――――――――
補足

 Cは、{頂点(0,4b)、軸x=0}の上に凸である放物線

 Cと直線ℓの交点【S(-√{(a+b)(4b-a)},a),T(√{(a+b)(4b-a)},a)

てれきち

すごく丁寧に回答してくださり、感謝です‼︎

ちなみにお聞きしたいのですが、
絶対値記号を外すとき、中身が負になる方を優先しているのは何故ですか??
あと、計算が途中から分からなくなってしまったので、教えてください(^_^;)
※画像の一番下から計算わからなくなりました。
 画像汚くて申し訳ないです!

mo1

>絶対値記号を外すとき、中身が負になる方を優先しているのは何故ですか??

●問題文の条件に「y≧a のとき」とあるので、|y-a|でなく、(y-a)で構いません【絶対値に関しては解決したと思います】

●また、「y≧a」なので、P(x,y) は、直線:y=a より、上側です【図を直して考えると、考えやすくなると思います】

>画像の一番下から計算わからなくなりました。

★御免なさい。記述ミスがあり混乱させてしまったようです、訂正+α です

● 4(a+b)y=-x²+4b(a+b)

  【両辺を 4(a+b) でわります】

     y=-{1/4(a+b)}x²+b

―――――――――――――――――――――――――――――――
補足

 Cは、{頂点(0,b)、軸x=0}の上に凸である放物線

 Cと直線ℓの交点【S(-√{(a+b)(b-a)},a),T(√{(a+b)(b-a)},a)

この回答にコメントする
News
Clear img 486x290
ノート共有アプリ「Clearnote」の便利な4つの機能
Siora photography hgfy1mzy y0 unsplash scaled
共通テストで使える数学公式のまとめ
Jeshoots com 436787 unsplash min 3 486x290
「二次関数の理解」を最大値まで完璧にするノート3選