この回答がベストアンサーに選ばれました。

(1)判別式<0

(2)判別式>0、軸>0、f(0)>0

この条件で解いてみてください。

005199

ごめんなさい
まだわからないです

きらうる

(1)
グラフが常にx軸より上方にあるということは、グラフはx軸に交わらないということです。
x軸に交わらないということは、f(x)=0、すなわち、二次方程式=0のときに、xは実数解をもたないということと同じことなんです。
実数解をもたないということは、判別式が負であればいいんです。
このような流れから、D<0というものが出てきています。
解いていくと、
D/4=(2a)²-(6a²+5a+2)<0
→ -2a²-5a-2<0
→ 2a²+5a+2>0
→ (2a+1)(a+2)>0
→ a<-2,-1/2<a
となります。

(2)x軸の正の部分で、y=f(x)のグラフとx軸とが異なる2点で交わるということは、まず、x軸と2点で交わらなければなりませんので、f(x)=0のときに、異なる2つの実数解を持てばいいんです。つまり、判別式>0という条件が1つ出てきます。
つぎに、x軸の正の部分で交わらないといけないので、f(x)のグラフはx>0側に頂点がないといけません。そうすることで、少なくとも1つは実数解をもつようになります。だから、軸は正にないといけないのです。
最後に、軸が正のところにあっても、x軸との交点が正の部分と負の部分の2点で交わってしまう場合があります。これを避けるために、f(0)というy軸の正の部分でグラフと交われば、必ずx軸の正の部分に2つの実数解をもつことになります。

かくして、判別式>0、軸>0、f(0)>0 という3つの条件が出てきたというわけです。

D/4=(2a)²-(6a²+5a+2)>0
→ -2a²-5a-2>0
→ 2a²+5a+2<0
→ (2a+1)(a+2)<0
→ -2<a<-1/2


軸=-2a>0
→ a<0


f(0)=2>0

①②③より共通範囲は、-2<a<-1/2

005199

わかりやすかったです
ありがとうございました!

Post A Comment
PromotionBanner
News
Clear img 486x290
ノート共有アプリ「Clear」の便利な4つの機能
Jeshoots com 436787 unsplash min 3 486x290
「二次関数の理解」を最大値まで完璧にするノート3選
%e6%9c%80%e5%88%9d%e3%81%ae%e3%83%95%e3%82%99%e3%83%ad%e3%82%af%e3%82%99%e7%94%bb%e5%83%8f%ef%bc%91 1 486x290
文系だって超わかる!【誰でも簡単に理解できるオススメ数学ノート3選】